Characteristics of Lead-Free Machinable Brass of Powder Metallurgycu-40 Mass%Zn/1.0 Mass% mg with Graphite Particles

Article Preview

Abstract:

In this paper, highstrength and lead-free machinable brass alloy with magnesium (Mg) and graphite (Gr) particles was fabricated via powder technology process.Mg particles were added 1.0 mass% for strengthening of brass matrix. Gr particles as machinable elements were added to the Cu-40 mass%Zn /1.0 mass% Mg (Cu-40Zn/1.0Mg) premixed powder by conventional mixing process.Spark plasma sintering process was used to consolidate the above mixed powder at 973 K.The SPSed Cu-40Zn/1.0Mg + X%Gr specimens were pre-heated at the solid solutecondition of Cu-Zn-Mg IMC, and immediately extruded.The machinability was evaluated by a drilling test using a drill tool under dry conditions.The extruded materialsexhibited fine α-β duplex phases, containing very fine precipitates of CuMgZn IMCs with 1-2μm in diameter regardless of Graddition. There was no reaction phase of reducing the machinability between brass matrix and Gr particles.Tensile properties of the extruded Cu-40Zn/1.0Mg +0.75 mass% Grmaterialwereyield strength (YS): 351 MPa, ultimate tensile strength (UTS): 539 MPa, and 18 % elongation.Average of drilling speed of Cu-40Zn/1.0Mg +0.75 Gr (N=10 times) was 0.15 mm/sthough the extruded Cu-40Zn/1.0Mg could not be drilled over 5 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-85

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Pantazopoulos: J. Mater. Eng. Perform. 11, 402-407, (2002).

Google Scholar

[2] Japan Capper and Brass Association, Base and Industrial technology of copper and copper alloys (in Japanese). (1994).

Google Scholar

[3] P. García, S. Rivera, M. Palacios, J. Belzunce: Eng. Fail. Anal. 17, 771-776 , (2010).

Google Scholar

[4] E. W. Thiele, K. J.A. Kundig, D. W. Murphy, G. Soloway, B. Duffin: CDA's Universal Machinability Index. SAE Technical Paper Series, No. 900365, International Congress and Exposition, Detroit, MI, (1990).

DOI: 10.4271/900365

Google Scholar

[5] J. X. Wu, M. R. Ji, M. Galeotti, A. M. Giusti, G. Rovida: Surf. Interface Anal. 22 , 323-326, (1994).

DOI: 10.1002/sia.740220170

Google Scholar

[6] X. Chen, A. Hu, M. Li, D. Mao: J. Alloys Compd. 460, 478-484, (2008).

Google Scholar

[7] S. Kuyucak, M. Sahoo: Can. Metall. Q. 35, 1–15, (1996).

Google Scholar

[8] B. D. Mellow, D. J. Thomas, M. J. Joyce, P. Kolkowski, N. J. Roberts, S. D. Monk: Nucl. Instrum. Methods Phys. Res. A 577, 690-695, (2007).

Google Scholar

[9] RoHS and WEEE compliant flame retardants developed for electrical connectors, Reinf. Plastics 51, 12, (2007).

DOI: 10.1016/s0034-3617(07)70234-5

Google Scholar

[10] C. Mans, S. Hanning, C. Simons, A. Wegner, A. Janβen, M. Kreyenschmidt: Spectrochim. Acta Part B 62, 116–122, (2007).

DOI: 10.1016/j.sab.2007.02.001

Google Scholar

[11] V. L. Whiting, D. P. Newcombe, M. Sahoo: Trans. Am. Foundrymen's Soc. 103, 683-691, (1995).

Google Scholar

[12] A. L. Fontaine, V.J. Keast : Mater. Charact. 57, 424-429, (2006).

Google Scholar

[13] V. Vazquez, A. Juarez-Hernandez, A. Mascarenas, P. Zambrano, M.A.L. H. Rodriguez : Eng. Fail. Anal. 17, 1285-1289, (2010).

Google Scholar

[14] H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, H. Atsumi: Mater. Trans. 51, 855-859, (2010).

Google Scholar

[15] Tetsuya Andoh, Tetsuro Atsumi, Yoshiro Yoshikawa: J. JCBRA. 40, 253-256, (2001).

Google Scholar

[16] K. Kondoh, H. Imai, J. Umeda, Y. Kousaka, A. Kojima: Trans. JWRI. 37, 87-89, (2008).

Google Scholar

[17] H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, H. Atsumi: Powder Technol. 198, 417-421, (2010).

DOI: 10.1016/j.powtec.2009.12.010

Google Scholar

[18] U. Borggren, M. Selleby: J. Phase Equilib. 24, 110-121, (2003).

Google Scholar

[19] H. Mindivan, H. Çimenoˇglu, E.S. Kayali: Wear 254, 532-537, (2003).

Google Scholar

[20] M. Sundberg, R. Sundberg, S. Hogmark, R. Otterberg, B. Lehtinen, S. E. Hgrnstrgm, S. E. Karlsson, Wear 115, 151-165, (1987).

DOI: 10.1016/0043-1648(87)90206-7

Google Scholar

[21] G. Mauvoisin, O. Bartier, R. El Abdi, A. Nayebi, Int. J. Mach. Tools Manuf. 43, 825-832, (2003).

DOI: 10.1016/s0890-6955(03)00051-8

Google Scholar

[22] C. Vilarinho, J.P. Davim, D. Soares, F. Castro, J. Barbosa, J. Mater. Proc. Technol. 170, 441-447, (2005).

Google Scholar

[23] L. Jin, R. Sandstrm, Mater. Design 15, 339-346, (1994).

Google Scholar

[24] H. Atsumi, H. Imai, S. Li, Y. Kousaka, A. Kojima, K. Kondoh, Mater. Sci. Forum 654- 656, 2552-2555, (2010).

DOI: 10.4028/www.scientific.net/msf.654-656.2552

Google Scholar

[25] S. Li, H. Imai, H. Atsumi, K. Kondoh, J. Alloys Compd. 493, 128-133, (2010).

Google Scholar

[26] S. Ikeno, K. Matusda, Y. Nakamura, T. Kawabata, Y. Uetani, J. JIRICu. 43, 26-30, (2004).

Google Scholar

[27] S. Li, K. Kondoh, H. Imai, H. Atsumi, Powder Technol. 205, 242–249, (2011).

Google Scholar

[28] H. Atsumi, H. Imai, S. Li, K. Kondoh, Y. Kousaka, A. Kojima: Mater. Chem. Phys. 135, 554-562, (2012).

Google Scholar

[29] N. Shinozaki, Jun Morita, K. Wasai, J. Inst. Light Met. Jpn. 55, 310-314, (2005).

Google Scholar

[30] T. Sato, A. Kato, K. Arai, H. Takizawa, S. Arai, J. Met. Finish. Soc. Jpn. 59, 265-267, (2008).

Google Scholar