Study on Pitting Corrosion Resistance of Nanocrystallized Bulk 304 Stainless Steel in 0.5mol/L Hydrochloric Acid Solution

Article Preview

Abstract:

Potentiodynamic and potentiostatic polarization experiments showed that the nanocrystallized bulk 304 stainless steel (nano304SS) exhibited a superior pitting resistance in 0.5 mol/L HCl solution, in comparison to the bulk 304 austenitic stainless steel (304SS). X-ray photoelectron spectroscopy characterization indicated that a passive film was formed on the nano304SS which was richer in Cr and denser than that on the 304SS

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-44

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. D. Acharya, K. B. Pai, Intergranular corrosion in austenitic stainless steel and TTS test analysis, Trans. Indian Inst. Met. 56(2003) 75-78.

Google Scholar

[2] A. H. Heuer, H. Kahn, P. M. Natishan, Electrostrictive stresses and breakdown of thin passive films on stainless steel, Electrochim. Acta. 58(2011) 157-160.

DOI: 10.1016/j.electacta.2011.09.027

Google Scholar

[3] M. S. Moon, K. D. Woo, M. H. Yoo, Surface preparation based on the corrosion behavior of on the austenite stainless steel 304, Adv. Mater. Res. 125(2010) 1271-1274.

DOI: 10.4028/www.scientific.net/amr.123-125.1271

Google Scholar

[4] R. B. Inturi, Z. Szklarska-Smialowska, Localized corrosion of nanocrystalline304 type stainless steel films. Corros. Sci. 33(1992) 398-403.

DOI: 10.5006/1.3315951

Google Scholar

[5] N. S. Cheruvu, R. Wei, D. W. Gandy, Influence of thermal exposure on the stability of metastable microstructures of sputter deposited nanocrystalline 304 and 310 stainless steel coatings, Surf. Coat. Technol. 205(2010) 1211-1219.

DOI: 10.1016/j.surfcoat.2010.10.035

Google Scholar

[6] L. Liu, Y. Li, F. H. Wang, Influence of nanocrystallization on pitting corrosion behavior of an austenitic stainless steel by stochastic approach and in situ AFM analysis, Electrochim. Acta. 55(2010) 2430-2436.

DOI: 10.1016/j.electacta.2009.11.088

Google Scholar

[7] P. Chen, L. Liu, Y. Li, Pitting corrosion of 304ss nanocrystalline thin film, Corros. Sci. 73(2013)32-43.

DOI: 10.1016/j.corsci.2013.03.022

Google Scholar

[8] J. F. Moulder, W. F. Stickle and P. E. Sobol, Handbook of X-Ray photoelectron spectroscopy, (1995).

Google Scholar

[9] S. N. Xu, S. G. Wang, H. B. Han, XPS and UPS characterization for Cr and Mn in high-temperature oxide films of bulk nanocrystalline 304 stainless steel, Spectrosc. Spect. Anal. 33(2013) 834-837.

Google Scholar

[10] A. Machet, A. Galtayries, P Marcus, XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water, Surf. Int. Anal. 34(2002) 197-200.

DOI: 10.1002/sia.1282

Google Scholar

[11] D. Ni, Y. M. Lou, P. D. Christofides, A method for real-time control of thin film composition using OES and XPS, Proc. Am. Contr. Conf. (2003)1320-1327.

DOI: 10.1109/acc.2003.1239773

Google Scholar

[12] M. Yehya, P. J. Kelly, Combined AFM and XPS analysis of complex surfaces, Surf. Coat. Technol. 174(2003) 286-289.

DOI: 10.1016/s0257-8972(03)00650-9

Google Scholar