[1]
M. Ha and S. Graham, Development of a thermal resistance model for chip-on-board packaging of high power LED arrays, Microelectronics Reliability, vol. 52, pp.836-844, (2012).
DOI: 10.1016/j.microrel.2012.02.005
Google Scholar
[2]
M.H. Chang, D. Das, P. V. Varde, and M. Pecht, Light emitting diodes reliability review, Microelectronics Reliability, vol. 52, pp.762-782, (2012).
DOI: 10.1016/j.microrel.2011.07.063
Google Scholar
[3]
B.H. Liou, C.M. Chen, R.H. Horng, Y.C. Chiang, and D.S. Wuu, Improvement of thermal management of high-power GaN-based light-emitting diodes, Microelectronics Reliability, vol. 52, pp.861-865, (2012).
DOI: 10.1016/j.microrel.2011.04.002
Google Scholar
[4]
Z. Guangchen, F. Shiwei, Z. Zhou, L. Jing, L. Jingwan, and Z. Hui, Thermal Fatigue Characteristics of Die Attach Materials for Packaged High-Brightness LEDs, Components, Packaging and Manufacturing Technology, IEEE Transactions on, vol. 2, pp.1346-1350, (2012).
DOI: 10.1109/tcpmt.2012.2200295
Google Scholar
[5]
I. Y. Chen, M. -Z. Guo, K. -S. Yang, and C. -C. Wang, Enhanced cooling for LED lighting using ionic wind, International Journal of Heat and Mass Transfer, vol. 57, pp.285-291, (2013).
DOI: 10.1016/j.ijheatmasstransfer.2012.10.015
Google Scholar
[6]
J.C. Wang, Thermal investigations on LED vapor chamber-based plates, International Communications in Heat and Mass Transfer, vol. 38, pp.1206-1212, (2011).
DOI: 10.1016/j.icheatmasstransfer.2011.07.002
Google Scholar
[7]
R. Vairavan, Z. Sauli, V. Retnasamy, R. C. Ismail, N. I. M. Nor, N. S. Nadzri, and H. Kamarudin, High Power LED Thermal and Stress Simulation on Copper Slug, in Computer Modelling and Simulation (UKSim), 2013 UKSim 15th International Conference on, 2013, pp.294-298.
DOI: 10.1109/uksim.2013.150
Google Scholar
[8]
M. W. Shin and S. H. Jang, Thermal analysis of high power LED packages under the alternating current operation, Solid-State Electronics, vol. 68, pp.48-50, (2012).
DOI: 10.1016/j.sse.2011.10.033
Google Scholar