[1]
H. Krapfenbauer, New Aspects for the Mass Production of Spur Gears by Cold Rolling, IPE International Industrial &Production Engineering, vol. 8, no. 3, pp.39-41, March (1984).
Google Scholar
[2]
N. Kurz, Theoretical and Experimental Investigations of the Grob, Cold Shape-Rolling Process, in Twenty-fifth International Machine Tool Design and Research Conference, Birmingham, 1985, pp.551-559.
DOI: 10.1007/978-1-349-07529-4_66
Google Scholar
[3]
J. Kahn, L. Zella and W. Suzanne, Finite Element Analysis of an Involute Spline, Journal of Mechanical Design, vol. 122, no. 2, pp.239-244, February (2002).
Google Scholar
[4]
K. T. Cui, Finite Element Analysis and Elastic-Plasticity Correction of Rolling Splines, M.S. thesis, Henan University of Science and Technology, Luoyang, China, (2008).
Google Scholar
[5]
Y. F. Xu, Dynamics Analysis and Simulation of Cold Rolling Spline, M.S. thesis, Henan University of Science and Technology, Luoyang, China, (2008).
Google Scholar
[6]
J. H. Quan, Study on Forming Mechanism of Involute Spline Shaft's Cold Rolling Based on ANSYS-DYNA, M.S. thesis, Henan University of Science and Technology, Luoyang, China, (2007).
Google Scholar
[7]
F. K. Cui, Study of High-speed precise Forming With cold roll-Beating technique, Ph.D. dissertation, Xi'an university of technology, Xi'an, China, (2007).
Google Scholar
[8]
U. F. Kocks, A. Argon and M. Ashby, Thermodynamics and Kinetics of Slip, Progress in Materials Science, no. 19, pp.1-5, October (1975).
Google Scholar
[9]
J. H. Li, Peng and Y. L. Da, Influence of Dynamic Recrystallization on Tensile Properties of AZ31B Magnesium Alloy Sheet, Materials and Manufacturing Processes, vol. 25, no. 8, pp.880-887, August (2010).
DOI: 10.1080/10426910903496805
Google Scholar
[10]
A. Ehab, El-Danaf, M. S. Soliman and A. A. Almajid, Effect of Solution Heat Treatment on the Hot Workability of Al –Mg-Si Alloy, Materials and Manufacturing Processes, vol. 6, no. 24, pp.637-643, December (2009).
DOI: 10.1080/10426910902769079
Google Scholar
[11]
Q. M. Guo, D. F. Li and S. L. Guo, Microstructural Models of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Materials and Manufacturing Processes, vol. 27, no. 9, pp.990-995, September (2012).
DOI: 10.1080/10426914.2011.610088
Google Scholar
[12]
R. C. Picu and A. Majorell, Mechanical Behavior of Ti-6Al-4V at High and Moderate Temperatures-Part II: Constitutive Modeling, Materials Science and Engineering A, vol. 326, no. 2, pp.306-316, February (2002).
DOI: 10.1016/s0921-5093(01)01508-8
Google Scholar
[13]
B. Smoljan, An Analysis of Relationships between Behavior and Microstructure Constitution of Hot-Work Tool Steel, Materials and Manufacturing Processes, vol. 24, no. 7-8, pp.786-790, July (2009).
DOI: 10.1080/10426910902813109
Google Scholar
[14]
D. Bombac, M. Brojan and M. Tercelj, Response to Hot Deformation Conditions and Microstructure Development of Nimonic 80a Superalloy, Materials and Manufacturing Processes, vol. 24, no. 6, pp.644-648, June (2009).
DOI: 10.1080/10426910902769103
Google Scholar
[15]
H. Mecking and U. F. Kocks, Kinetics of Flow and Strain-hardening, Acta Metall, vol. 29, no. 11, pp.1865-1875, November (1981).
DOI: 10.1016/0001-6160(81)90112-7
Google Scholar
[16]
Y. Estrin, Unified Constitutive Laws of Plastic Deformation, New York: Academic Press, 1996, pp.69-106.
DOI: 10.1016/b978-012425970-6/50003-5
Google Scholar
[17]
H. Merking and U. F. Kocks, Kinetics of Flow and Strain-hardening, Acta Metallurgica, vol. 29, no. 11, pp.1865-1875, November (1981).
DOI: 10.1016/0001-6160(81)90112-7
Google Scholar