Research on Biological Materials with Uranium Biosorption by Microalgae: A Review

Article Preview

Abstract:

With the development of nuclear science, uranium-contained wastewater was heavily generated. If not properly handled, it is bound to bring environmental and human health hazards. Conventional uranium-contained wastewater treatment technologies are limited in certain aspects, such as high reagent and energy consumption, secondary pollution and so on. The microalgae-based biosorption technique for treating uranium-contained wastewater is an economical, simple, effective and feasible approach. This paper summarized the basic mechanism of the technology, and discussed the effects of different pH, algal cell biomass concentration, initial uranium ion concentration and the growth state of algal cells on the biological treatment process of uranium-contained wastewater. Finally, the study explored the future prospects of the technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-296

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact. 64: 93-112. (2003).

DOI: 10.1016/s0265-931x(02)00041-3

Google Scholar

[2] Volesky B, Holan ZR. Biosorption of Heavy-Metals. Biotechnol Prog. 11: 235-50. (1995).

DOI: 10.1021/bp00033a001

Google Scholar

[3] Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater. 162: 616-45. (2009).

DOI: 10.1016/j.jhazmat.2008.06.042

Google Scholar

[4] Das N. Remediation of Radionuclide Pollutants through Biosorption - an Overview. Clean-Soil Air Water. 40: 16-23. (2012).

DOI: 10.1002/clen.201000522

Google Scholar

[5] Hu H-Y, Li X, Yu Y, Wu Y-H, Sagehashi M, Sakoda A. Domestic wastewater reclamation coupled with biofuel/biomass production based on microalgae: a novel wastewater treatment process in the future. J Water Environ Technol. 9: 199-207. (2011).

DOI: 10.2965/jwet.2011.199

Google Scholar

[6] Gonzalez-Munoz MT, Merroun ML, Ben Omar N, Arias JM. Biosorption of uranium by Myxococcus xanthus. Int Biodeterior Biodegrad. 40: 107-14. (1997).

DOI: 10.1016/s0964-8305(97)00041-3

Google Scholar

[7] Sar P, Kazy SK, D'Souza SF. Radionuclide remediation using a bacterial biosorbent. Int Biodeterior Biodegrad. 54: 193-202. (2004).

DOI: 10.1016/j.ibiod.2004.05.004

Google Scholar

[8] Norberg AB, Persson H. Accumulation of Heavy-Metal Ions by Zoogloea-Ramigera. Biotechnol Bioeng. 26: 239-46. (1984).

DOI: 10.1002/bit.260260307

Google Scholar

[9] Friis N, Myerskeith P. Biosorption of Uranium and Lead by Streptomyces-Longwoodensis. Biotechnol Bioeng. 28: 21-8. (1986).

DOI: 10.1002/bit.260280105

Google Scholar

[10] Kapoor A, Viraraghavan T, Cullimore DR. Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol. 70: 95-104. (1999).

DOI: 10.1016/s0960-8524(98)00192-8

Google Scholar

[11] Tsezos M, Volesky B. The Mechanism of Uranium Biosorption by Rhizopus-Arrhizus. Biotechnol Bioeng. 24: 385-401. (1982).

DOI: 10.1002/bit.260240211

Google Scholar

[12] Yang JB, Volesky B. Biosorption of uranium on Sargassum biomass. Water Res. 33: 3357-63. (1999).

DOI: 10.1016/s0043-1354(99)00043-3

Google Scholar

[13] Zhang XZ, Luo SG, Yang Q, Zhang HL, Li JY. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. J Appl Phycol. 9: 65-71. (1997).

Google Scholar

[14] Horikoshi T, Nakajima A, Sakaguchi T. Uptake of uranium by various cell fractions of Chlorella regularis. Radioisotopes. 28: 485-8. (1979).

DOI: 10.3769/radioisotopes.28.8_485

Google Scholar

[15] Kalin M, Wheeler WN, Meinrath G. The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact. 78: 151-77. (2005).

DOI: 10.1016/j.jenvrad.2004.05.002

Google Scholar

[16] Ghorbani F, Younesi H, Ghasempouri SM, Zinatizadeh AA, Amini M, Daneshi A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem Eng J. 145: 267-75. (2008).

DOI: 10.1016/j.cej.2008.04.028

Google Scholar

[17] Gok C, Aytas S. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater. 168: 369-75. (2009).

DOI: 10.1016/j.jhazmat.2009.02.063

Google Scholar

[18] Vogel M, Gunther A, Rossberg A, Li B, Bernhard G, Raff J. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ. 409: 384-95. (2010).

DOI: 10.1016/j.scitotenv.2010.10.011

Google Scholar

[19] Amini M, Younesi H, Bahramifar N. Biosorption of U(VI) from Aqueous Solution by Chlorella vulgaris: Equilibrium, Kinetic, and Thermodynamic Studies. J Environ Eng-ASCE. 139: 410-21. (2013).

DOI: 10.1061/(asce)ee.1943-7870.0000651

Google Scholar