Ultraviolet Laser Induced Damage Characteristic of SiO2 Single Layers

Article Preview

Abstract:

Surface and subsurface defects of optics are of major concern in improving laser induced damage threshold. SiO2 single layers were fabricated by physical vapor deposition and sol-gel technique on fused silica substrates. HF acid etching and ultrasonic cleaning process are used to investigate the effect of surface and subsurface defects of substrates on the laser induced damage threshold (1-on-1, 8 ns at 355nm). Experimental data are then fitted with the Gaussian model of threshold distribution, which permits to discriminate different kinds of defects and extract their densities and threshold distribution. The interpretation of these data is further discussed according to their cleaning and fabrication method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-77

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fournier, J. Neauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, S. Jouannigot. Green luminescence in silica glass: A possible indicator of subsurface fracture. Applied Physics Letters, 2012, 100: 114103.

DOI: 10.1063/1.3693393

Google Scholar

[2] M. L. André. Status of the LMJ project, Proc. SPIE 1996, 3047: 38-42.

Google Scholar

[3] W. H. Lowdermilk. Status of the National Ignition Facility project. Proc. SPIE 1996, 3047: 16–37.

Google Scholar

[4] J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, S. Jouannigot. Temperature dependence of luminescence for different surface flaws in high purity silica glass. Optical Materials Express, 2013, 3: 1-10.

DOI: 10.1364/ome.3.000001

Google Scholar

[5] J. Neauport, P. Cormont, P. Legros, C. Ambard, J. Destribats. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy. Optics Express, 2009, 17: 3543-3554.

DOI: 10.1364/oe.17.003543

Google Scholar

[6] J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, J. -C. Birolleau. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm. Optics Express 2005, 13: 10163–10171.

DOI: 10.1364/opex.13.010163

Google Scholar

[7] H. Bercegol, P. Grua, D. Hébert, J. P. Morreeuw. Progress in the understanding of fracture related laser damage of fused silica. Proc of SPIE 2007, 6720: 672003.

DOI: 10.1117/12.752830

Google Scholar

[8] J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, Z. X. Fan. Subsurface damage in optical substrates, Optik, 2005, 116: 288–294.

DOI: 10.1016/j.ijleo.2005.02.002

Google Scholar

[9] H. Krol, L. Gallais, C. Grézes-Besset, J. -Y. Natoli, M. Commandré. Investigation of nanoprecursors threshold distribution in laser-damage testing, Optics Communications, 2005, 256: 184–189.

DOI: 10.1016/j.optcom.2005.06.059

Google Scholar

[10] Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, C. W. Carr. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model. Optics Letters, 2010, 35: 2538-3540.

DOI: 10.1364/ol.35.002538

Google Scholar

[11] T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2), Optics Express, 2012, 20: 11561-11573.

DOI: 10.1364/oe.20.011561

Google Scholar

[12] Z. Zheng, X. T. Zu, X. D Jiang, X. Xiang, J. Huang, X. D. Zhou, C. H Li, W. G. Zheng, L. Li. Effect of HF etching on the surface quality and laser-induced damage of fused silica, Optics & Laser Technology, 2012, 44: 1039–1042.

DOI: 10.1016/j.optlastec.2011.10.013

Google Scholar