The Preparation and Characterization of the Mesoporous Poly(bisphenol-A carbonate) – Silica Nanocomposites

Article Preview

Abstract:

The mesoporous polycarbonate-silica nanocomposite materials were synthesized through the modified sol-gel approach under acidic condition. The specific surface area, pore diameter and pore volume of polycarbonate-silica could be controlled by changing the acidity of the synthesis system. The polycarbonate-silica possess an irregular block morphology according to the scanning electron microscopy observations. With decreasing the pH value of the synthesis system, the specific surface area and pore diameter of polycarbonate-silica were raised but the pore volume was reduced. The maximum specific surface area of polycarbonate-silica was 701.71m2/g which presented by the results of Nitrogen adsorptiondesorption isotherms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-85

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Haldorai Yuvaraj, Shim Jae-Jin, Lim Kwon Taek. Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2 [J]. The Journal of Supercritical Fluids, 2012 71 45-63.

DOI: 10.1016/j.supflu.2012.07.007

Google Scholar

[2] Naffakh Mohammed, Díez-Pascual Ana M., Marco Carlos, Ellis Gary J., Gómez-Fatou Marián A. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites [J]. Progress in Polymer Science, 2013 38 (8) 1163-1231.

DOI: 10.1016/j.progpolymsci.2013.04.001

Google Scholar

[3] Park Dae-Hwan, Hwang Seong-Ju, Oh Jae-Min, Yang Jae-Hun, Choy Jin-Ho. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications [J]. Progress in Polymer Science, 2013 38 (10-11) 1442-1486.

DOI: 10.1016/j.progpolymsci.2013.05.007

Google Scholar

[4] Liakos Ioannis L., Newman Roger C., Mcalpine Eoghan, Alexander Morgan R. Study of the Resistance of SAMs on Aluminium to Acidic and Basic Solutions Using Dynamic Contact Angle Measurement [J]. Langmuir, 2006 23 (3) 995-999.

DOI: 10.1021/la062233v

Google Scholar

[5] Hu Yongqi, Wu Hengpeng, Gonsalves Kenneth, Merhari Lhadi. Nanocomposite resists for electron beam nanolithography [J]. Microelectronic Engineering, 2001 56 (3–4) 289-294.

DOI: 10.1016/s0167-9317(01)00420-8

Google Scholar

[6] Dou Yu-Qian, Zhai Yunpu, Zeng Fanwu, Liu Xiao-Xia, Tu Bo, Zhao Dongyuan. Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6 [J]. Journal of Colloid and Interface Science, 2010 341 (2) 353-358.

DOI: 10.1016/j.jcis.2009.09.015

Google Scholar

[7] Heydari-Gorji Aliakbar, Sayari Abdelhamid. CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: Experimental and kinetic modeling [J]. Chemical Engineering Journal, 2011 173 (1) 72-79.

DOI: 10.1016/j.cej.2011.07.038

Google Scholar

[8] Pressyanov D., Mitev K., Georgiev S., Dimitrova I. Sorption and desorption of radioactive noble gases in polycarbonates [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009 598 (2) 620-627.

DOI: 10.1016/j.nima.2008.09.044

Google Scholar

[9] Pressyanov D., Mitev K., Dimitrova I., Georgiev S. Solubility of krypton, xenon and radon in polycarbonates. Application for measurement of their radioactive isotopes [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011 629 (1) 323-328.

DOI: 10.1016/j.nima.2010.11.112

Google Scholar