Synthesize and Evaluation of Electrospun Perovskite (Ba0.5Sr0.5Co0.2Fe0.8O3- δ) Nanofibers for Intermediate Temperature Solid- Oxide Fuel Cell

Article Preview

Abstract:

In recent years, one dimensional nanostructure, nanofibers with unique properties have been subjected of intense research due to potential properties in many applications. This study presents synthesize of Perovskite-type Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF) nanofibers using sol-gel via electrospinning as a cathode for intermediate temperature solid oxide fuel cell. BSCF nanofibers are prepared by treating electrospun polyvinyl Pyrrolidon/ Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite fibers at high temperature in an air atmosphere. BSCF nanofibers were characterized by x-ray diffraction (XRD) to observe desired structure, scanning electron microscopy (SEM) to investigated the morphology of fibers, and Brunauer, Emmett and Teller (BET) for measuring the surface area. To the best of our knowledge, investigation on Ba0.5Sr0.5 Co0.2 Fe 0.8O3−δ nanofibers has not been reported up to now.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1544-1550

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.C.H. Steele, Solid State Ionics 129 (2000) 95.

Google Scholar

[2] T. Hibino, A. Hashimoto, I. Inoue, J. Tokuno, S. Yoshida, M. Sano, Science 288(2000) (2031).

Google Scholar

[3] Brandon NP, Skinner S, Steele BCH. Annual review of materials research 2003; 33: 183-213.

Google Scholar

[4] Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, et al. Science 2009; 326: 126-9.

Google Scholar

[5] L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76 (1995) 259–271.

Google Scholar

[6] L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76 (1995) 273–283.

Google Scholar

[7] Z.P. Shao, S.M. Haile, Nature 431 (2004) 170–173.

Google Scholar

[8] Hirabayashi Daisuke, Tomita Atsuko, Teranishi Shiny, Hibino Takashi, Sano Mitsuru. J Solid state ionic 2005; 176; 881-7.

Google Scholar

[9] P.V. Dollen, S. Barnett, J. Am. Ceram. Soc. 88 (2005) 3361.

Google Scholar

[10] S.Z. Wang, Y.M. Zou, Electrochem. Commun. 8 (2006) 927–931.

Google Scholar

[11] Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, S.M. Liu, Electrochim. Acta 52 (2007) 7343–7351.

Google Scholar

[12] J. Pen˜a-Martı´nez, D. Marrero-Lo´ pez, J.C. Ruiz-Morales, B.E. Buergler, P. Nu´ n˜ez, L.J. Gauckler, Solid State Ionics 177 (2006) 2143–2147.

Google Scholar

[13] A. Petric, P. Huang, F. Tietz, Solid State Ionics 135 (2000) 719–725.

Google Scholar

[14] Z. Chen, R. Ran, W. Zhou, Z. Shao, S. Liu, Electrochim. Acta 52 (2007) 7343.

Google Scholar

[15] Q. WANG, Y . YUAN, M . HAN, and P. ZHU , J Rare materials, vol28, 2009, 1, p.39.

Google Scholar

[16] Y. H. Lim, J. L. Jong, S. Yoon, Ch. E. Kim, H.J. Hwang. J Power Sources 171 (2007) 79–85.

Google Scholar

[17] S. Maensiri, W. Nuansin, Mater . Chem. Phys. 99(2006)104.

Google Scholar

[18] S. Maensiri, W. Nuansin, J. Klinkaewnarong, P. Laokul, J. Khemprasit, J. Collid Interface Sci. 297 (2006) 578.

Google Scholar

[19] Y.W. Ju, J.H. Park, H.R. Jungs, S.J. Cho, W.J. Lee, Mater Sci. Eng. B 147(2008)7.

Google Scholar

[20] Nandana Bhardwaj, Subhas C. Kundu, J Biotechnology Advances, 2010, P23.

Google Scholar