[1]
J. R. Siemon, E. Kowalczyk, D. P. Fitzgibbons, and W. Baguley: Peak bed temperature prediction on a lead/zinc sinter plant, Minerals Engineering, Vol. 4, no. 1 (1991), pp.63-78.
DOI: 10.1016/0892-6875(91)90119-g
Google Scholar
[2]
G. S. Upadhyaya: Some issues in sintering science and technology, Materials chemistry and physics, Vol. 67 (2001), pp.1-5.
Google Scholar
[3]
S. H. Lee, C. B. Yoon, S. M. Lee, and H. E. Kim: Reaction sintering of lead zinc niobate-lead zirconate titanate ceramics, Journal of the European Ceramic Society, Vol. 38, no. 6 (2003), pp.1081-1090.
DOI: 10.1016/j.jeurceramsoc.2004.10.005
Google Scholar
[4]
E. Jak, B. J. Zhao, I. Harvey, and P. C. Hayes: Experimental study of phase equilibria in the PbO-ZnO-Fe2O3-(CaO+SiO2) system in air for the lead and zinc blast furnace sinters (CaO/SiO2 weight ratio of 0. 933 and PbO/CaO+SiO2) ratios of 2. 0 and 3. 2), Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 34, no. 4 (2003).
DOI: 10.1007/s11663-003-0065-2
Google Scholar
[5]
Y. L. Wang, C. H. Yang, W. H. Gui and X. Ling: Hierachical intelligent optimization blending system based on production indices for lead-zinc sintering process, In the 17th IFAC World Congress, Seoul, Korea (2008), pp.3286-3291.
DOI: 10.3182/20080706-5-kr-1001.00558
Google Scholar
[6]
M. J. Er, J. Liao and J. Y. Lin: Fuzzy neural network-based quality prediction system for sintering process, IEEE Transactions on Fuzzy Systems, Vol. 8, no. 3 (2000), pp.314-324.
DOI: 10.1109/91.855919
Google Scholar
[7]
C. H. Xu, M. Wu, J. H. She and R. Yokoyama: Integrated neural-network-based method for predicting synthetic permeability in lead-zinc sintering process, In the 7th IEEE International Conference on Cybernetic Intelligent Systems, London, UK (2008).
DOI: 10.1109/ukricis.2008.4798973
Google Scholar
[8]
C. S. Wang and M. Wu: Intelligent integrated predictive model for BTP in lead-zinc sintering process, Journal of Engineering Systems Modelling and Simulation, Vol. 2, no. 3 (2010), pp.162-168.
DOI: 10.1504/ijesms.2010.035111
Google Scholar
[9]
Y. H. Lin and P. C. Lee: Novel high-precision grey forecasting model. Automation in Construction, Vol. 16 (2007), pp.771-777.
DOI: 10.1016/j.autcon.2007.02.004
Google Scholar
[10]
W. L. Yao Albert, S. C. Chi and J. H. Chen: An improved grey-based approach for electricity demand forecasting. Electric Power Systems Research, Vol. 67 (2003), pp.217-224.
DOI: 10.1016/s0378-7796(03)00112-3
Google Scholar
[11]
P. Themis, K. Nick and M. Alberto: Using datacube aggregate for approximate querying and deviation detection. IEEE Transactions on Knowledge and Data Engineering, Vol. 17, no. 11 (2005), pp.1465-1477.
DOI: 10.1109/tkde.2005.187
Google Scholar
[12]
Mohamed Saleh: Estimating market shares in each market segment using the information entropy concept. Applied Mathematics and Computation, Vol. 190 (2007), pp.1735-1739.
DOI: 10.1016/j.amc.2007.02.049
Google Scholar