Improved Lazy Learning Based Dynamic Modeling Method on Combustion Process

Article Preview

Abstract:

This paper presents a new data-based method for the industrial combustion process. In this method, angle measure, which presents change trend of samples, is introduced in evaluating the similarity between the sample data and query data, which is not exploited in the previous word. And ARX method is used to build the local model. With the moving of working points, different models are set up to realize the accurate modeling for combustion process. An example of coke oven combustion process is presented to illustrate the modeling capability of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

680-685

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C. Buss and H. R. Mccollum. Feedforward heating control for coke batteries. Ironmaking Conf. Proc., Vol. 67(1984), p.205–208.

Google Scholar

[2] D. Wild, T. Kiefer, A. Kugi. A mathematical model of a slab reheating furnace with radioactive heat transfer and non-participating gaseous media. International Journal of Heat and Mass Transfer, Vol. 5(2010), pp.5933-5946.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.029

Google Scholar

[3] O. Nelles. Nonlinear System Identification. (Springer, Berlin 2001).

Google Scholar

[4] W. Pedrycz, A. Amato, V, D, Lecce, V. Piuri. Fuzzy clustering with partial supervision in organization and classification of digital Images. IEEE Transactions on Fuzzy Systems, Vol. 16(2008), pp.1008-1016.

DOI: 10.1109/tfuzz.2008.917287

Google Scholar

[5] M. E. Gegúndez, J. Aroba, J.M. Bravo. Identification of piecewise affine systems by means of fuzzy clustering and competitive learning. Engineering Applications of Artificial Intelligence, Vol. 21(2008), pp.1321-1329.

DOI: 10.1016/j.engappai.2008.03.014

Google Scholar

[6] A. Lj. Juloski, W. P. M. H. Heemels, G. Ferrari-Trecate. Data-based hybrid modeling of the component placement process in pick-and-place machines. Control Engineering Practice, Vol. 12(2004), pp.1241-1252.

DOI: 10.1016/j.conengprac.2004.04.004

Google Scholar

[7] A. Bemporad, A. Garulli, S. Paoletti, A. Vicino. A bounded-error approach to piecewise affine system identification. IEEE Transcations on Automatic, Vol. 50(2005), pp.1567-1580.

DOI: 10.1109/tac.2005.856667

Google Scholar

[8] E. Bertolissi, M. Birattari, G. Bontempi, A. Duchateau, H. Bersini. Data-driven techniques for direct adaptive control: the lazy and the fuzzy approaches. Fuzzy Sets and Systems, Vol. 128(2002), pp.3-14.

DOI: 10.1016/s0165-0114(01)00179-8

Google Scholar

[9] A. Lj. Juloski, W. P. M. H. Heemels, G. Ferrari-Trecate. Data-based hybrid modeling of the component placement process in pick-and-place machines. Control Engineering Practice, Vol. 12(2004), pp.1241-1252.

DOI: 10.1016/j.conengprac.2004.04.004

Google Scholar

[10] Bertolissi E, Birattari M, Bontempi G, Duchateau A, Bersini H. Data-driven techniques for direct adaptive control: the lazy and the fuzzy approaches. Fuzzy Sets and Systems, Vol. 128(2002), pp.3-14.

DOI: 10.1016/s0165-0114(01)00179-8

Google Scholar

[11] C. G. Atkeson, A. W. Moore, S. Schaal. Locally weightedlearning. Artificial Intelligence Review. Vol. 11(1997), p.11–73.

Google Scholar

[12] T. H. Pan, S. Y. Li, X. Wang. A Multi-model modeling approach to nonlinear systems based on lazy learning. Proceedings of the 24th Chinese Control Oonference. (2005), pp.268-274.

Google Scholar