[1]
H.G. Enjieu Kadji, J.B. Chabi Orou and P. Woafo, Synchronization dynamics in a ring of four mutually coupled biological systems, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), 1361-1372.
DOI: 10.1016/j.cnsns.2006.11.004
Google Scholar
[2]
S. E. Pinto, S. R. Lopez and R. L. Viana, Collective behavior in a chain of Van der Pol oscillators with power-law coupling, Physica A, Vol. 303 (2002), 339-356.
DOI: 10.1016/s0378-4371(01)00549-0
Google Scholar
[3]
K. Cuomo and A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., Vol. 71 (1993), 65-68.
DOI: 10.1103/physrevlett.71.65
Google Scholar
[4]
R.M. Robertson and K.G. Pearson, Neural circuits in the flight system of the locust, J. Neurophysiol., Vol. 53 (1985), 110-128.
Google Scholar
[5]
S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa, Self-synchronization in coupled salt-water oscillators, Physica D, Vol. 115 (1998), 313-320.
DOI: 10.1016/s0167-2789(97)00240-6
Google Scholar
[6]
L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., Vol. 64 (1990), 821-824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[7]
H.G. Winful and L. Rahman, Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers, Phys. Rev. Lett. , Vol. 65 (1990), 1575-1578.
DOI: 10.1103/physrevlett.65.1575
Google Scholar
[8]
R.E. Mirollo and S.H. Strogatz, Synchronization of the pulse-coupled biological oscillators, SIAM J. Appl. Math. , Vol. 50 (1990), 1645-1662.
DOI: 10.1137/0150098
Google Scholar
[9]
S. Wirkus et al, The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dynam., Vol. 30 (2002), 205-221.
Google Scholar
[10]
N. Hirano et al, Existence of limit cycles for coupled van der Pol equations, J. Differ. Equat. , Vol. 195 (2003), 194-209.
DOI: 10.1016/s0022-0396(03)00212-2
Google Scholar
[11]
J. M. Zhang and X. S. Gu, Stability and bifurcation analysis in the delay-coupled van der Pol oscillators, Appl. Math. Model., Vol. 34 (2010), 2291-2299.
DOI: 10.1016/j.apm.2009.10.037
Google Scholar
[12]
Y.L. Song, M. A. Han and Y. H. Peng, Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Soliton Fract., Vol. 22 (2004), 1139-1148.
DOI: 10.1016/j.chaos.2004.03.026
Google Scholar