Oscillation Analysis in a System of Coupled Oscillators with Delays

Article Preview

Abstract:

In this paper, a system of coupled oscillators with delays is investigated. Some sufficient conditions to guarantee the existence of oscillations for the model are obtained. Examples are provided to demonstrate the proposed results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

787-793

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.G. Enjieu Kadji, J.B. Chabi Orou and P. Woafo, Synchronization dynamics in a ring of four mutually coupled biological systems, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), 1361-1372.

DOI: 10.1016/j.cnsns.2006.11.004

Google Scholar

[2] S. E. Pinto, S. R. Lopez and R. L. Viana, Collective behavior in a chain of Van der Pol oscillators with power-law coupling, Physica A, Vol. 303 (2002), 339-356.

DOI: 10.1016/s0378-4371(01)00549-0

Google Scholar

[3] K. Cuomo and A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., Vol. 71 (1993), 65-68.

DOI: 10.1103/physrevlett.71.65

Google Scholar

[4] R.M. Robertson and K.G. Pearson, Neural circuits in the flight system of the locust, J. Neurophysiol., Vol. 53 (1985), 110-128.

Google Scholar

[5] S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa, Self-synchronization in coupled salt-water oscillators, Physica D, Vol. 115 (1998), 313-320.

DOI: 10.1016/s0167-2789(97)00240-6

Google Scholar

[6] L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., Vol. 64 (1990), 821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[7] H.G. Winful and L. Rahman, Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers, Phys. Rev. Lett. , Vol. 65 (1990), 1575-1578.

DOI: 10.1103/physrevlett.65.1575

Google Scholar

[8] R.E. Mirollo and S.H. Strogatz, Synchronization of the pulse-coupled biological oscillators, SIAM J. Appl. Math. , Vol. 50 (1990), 1645-1662.

DOI: 10.1137/0150098

Google Scholar

[9] S. Wirkus et al, The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dynam., Vol. 30 (2002), 205-221.

Google Scholar

[10] N. Hirano et al, Existence of limit cycles for coupled van der Pol equations, J. Differ. Equat. , Vol. 195 (2003), 194-209.

DOI: 10.1016/s0022-0396(03)00212-2

Google Scholar

[11] J. M. Zhang and X. S. Gu, Stability and bifurcation analysis in the delay-coupled van der Pol oscillators, Appl. Math. Model., Vol. 34 (2010), 2291-2299.

DOI: 10.1016/j.apm.2009.10.037

Google Scholar

[12] Y.L. Song, M. A. Han and Y. H. Peng, Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays, Chaos Soliton Fract., Vol. 22 (2004), 1139-1148.

DOI: 10.1016/j.chaos.2004.03.026

Google Scholar