A Comparative Investigation of the Electrocatalytic Oxidation of Methanol on Pt Modified TiO2 Nanotube Electrodes with Two Methods

Article Preview

Abstract:

In this work, it was investigated and compared that electro-catalytic oxidation of methanol in acidic medium at TiO2 nanotube (TNT) electrode modified by platinum (Pt) with two methods. Pt modified TNT electrodes were prepared by thermal decomposition (TD) and electrolytic deposition (ED). The so-prepared TD-Pt/TNT and ED-Pt/TNT electrodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Electrochemical investigations indicate that ED-Pt/TNT has higher electro-catalytic activity and better tolerance to poisoning species in methanol oxidation than TD-Pt/TNT, which can be ascribed to the higher dispersion and stability of ED-Pt than TD-Pt on TNT electrode. The present work provides some basis for the design of high performance catalysts for direct methanol fuel cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

586-590

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Su, W. Jia, A. Schempf, Y. Ding and Y. Lei: J. Phys. Chem. C Vol. 113 (2009), p.16174.

Google Scholar

[2] Y. -W. Lee, J. -K. Oh, H. -Su. Kim, J. -K. Lee, S. -B. Han, W. Choi and K. -W. Park: J. Power Sources Vol. 195 (2010), p.5896.

Google Scholar

[3] H. Wang, T. Löffler and H. Baltruschat: J. Appl. Electrochem. Vol. 31 (2001), p.759.

Google Scholar

[4] M. G. Hosseini adn M. M. Momeni: Electrochimi. Acta Vol. 70 (2012), p.1.

Google Scholar

[5] S. Kim and S. -J. Park: Solid State Ionics Vol. 178 (2008), p. (1915).

Google Scholar

[6] M. Carmo, A. R. dos Santos, J. G. R. Poco and M. Linardi: J. Power Sources Vol. 173 (2007), p.860.

Google Scholar

[7] H. -S. Oh, K. Kim, Y. -J. Ko and H. Kim: Int. J. Hydrogen Energy Vol. 35 (2010), p.701.

Google Scholar

[8] Y. -J. Ko, H. -S. Oh and H. Kim: J. Power Sources Vol. 195 (2010), p.2623.

Google Scholar

[9] Y. Lei, G. Zhao, X. Tong, M. Liu, D. Li and R. Geng: ChemPhysChem. Vol. 11 (2010), p.276.

Google Scholar

[10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang: Nature Mater. Vol. 4 (2005), p.455.

Google Scholar

[11] M. Adachi, Y. Murata, I. Okada and S. Yoshikawa: J. Electrochem. Soc. Vol. 150 (2003), p. G488.

Google Scholar

[12] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes: Nano Lett. Vol. 8 (2008), p.3781.

Google Scholar

[13] O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes: Nano Lett. Vol. 9 (2009), p.731.

Google Scholar

[14] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), p. (2011).

Google Scholar

[15] L. Xing, J. Jia and Y. Wang: Int. J. Hydrogen Energy Vol. 35 (2010), p.12169.

Google Scholar

[16] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. J. LaTempa, A. Fitzgerald and C. Grimes: J. Phys. Chem. B Vol. 112 (2008), p.15261.

DOI: 10.1021/jp809312r

Google Scholar

[17] S. V. Kraemer, K. Wikander, G. Lindbergh, A. Lundblad and A. E. C. Palmqvist: J. Power Sources Vol. 180 (2008), p.185.

Google Scholar

[18] H. Yung, K. –Y. Chan and F. L. –Y. Lam: J. Mater. Res. Vol. 28 (2013), p.863.

Google Scholar

[19] M. L. Anderson, R. M. Stroud and D. R. Rolison: Nano Lett. Vol. 2 (2002), p.235.

Google Scholar

[20] L. Dubau, F. Hahn, C. Coutanceau, J. -M. Léger and C. Lamy: J. Electroanal. Chem. Vol. 554–555 (2003), p.407.

Google Scholar

[21] Y. Y. Chu, Z. B. Wang, D. M. Gu and G. E. Yin: J. Power Sources Vol. 195 (2010), p. l799.

Google Scholar

[22] X. Wang, W. Gu, L. Lu, X. Yang, W. Hua, Q. Song, P. Wu, Y. Huang, Y. Ma, G. Chao and W. Yang: Thermochim. Acta Vol. 157 (1990), p.321.

DOI: 10.1016/0040-6031(90)80033-u

Google Scholar

[23] C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra and M. Pasquali: J. Power Sources Vol. 183 (2008), p.84.

DOI: 10.1016/j.jpowsour.2008.04.083

Google Scholar

[24] C. Zhong, W. B. Hu and Y. F. Cheng: J. Power Sources Vol. 196 (2011), p.8064.

Google Scholar

[25] G. Lu and G. Zangari: Electrochim. Acta Vol. 51 (2006), p.2531.

Google Scholar

[26] G. Fóti, C. Mousty, K. Novy, Ch. Comninellis and V. Reid: J. Appl. Electrochem. Vol. 30 (2000), p.147.

DOI: 10.1023/a:1003928608596

Google Scholar

[27] L. A. da Silva, V. A. Alves, S. C. de Castro and J. F. C. Boodts: Colloids Surf. A Vol. 170 (2000), p.119.

Google Scholar

[28] H. Y. Eileen and S. Keith: Electrochem. Commun. Vol. 6 (2004), p.361.

Google Scholar

[29] H. Kim, N. P. Subramanian and B. N. Popov: J. Power Sources Vol. 138 (2004), p.14.

Google Scholar

[30] H. Natter and R. Hempelmann: Electrochim Acta Vol. 49 (2003), p.51.

Google Scholar