Research on Biochemical Materials with Hydroxylation of Androst-4-en-3,17-dione by Colletotrichum lini AS3. 4486

Article Preview

Abstract:

Microbial transformation of androst-4-en-3,17-dione (AD; 1) using Colletotrichum lini AS3. 4486 resulted in the production of two metabolites 2 and 3. The structures of these compounds were elucidated by spectroscopic analysis (LC-MS, FTIR and NMR) as 15α-hydroxyandrost-4-en-3,17-dione (15α-OH-AD; 2) and 11α,15α-dihydroxyandrost-4-en-3,17-dione (11α,15α-diOH-AD; 3). AD underwent regioselective hydroxylation at 15α position, subsequently hydroxylated at 11α position and converted to compound 3. 11α,15α-diOH-AD as an important metabolic product was pharmaceutical intermediate and the yield was up to 97.58% when the concentration of substrate was 4 g L-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-351

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Kolet, S. Haldar and H.V. Thulasiram, in: Steroids, Vol. 78 (2013), pp.1152-1158.

Google Scholar

[2] V.V. Kollerov, A.A. Shutov, V.V. Fokina, G.V. Sukhodolskaya and M.V. Donova, in: J. Ind. Microbiol. Biotechnol, Vol. 148 (2006), pp.719-723.

Google Scholar

[3] C. Perez, A. Falero, and B.R. Hung, in: J. Mol. Catal. B Enzym, Vol. 55 (2008), pp.61-68.

Google Scholar

[4] S. Ahmad, S.K. Garg and B.N. Johri, in: Biotechnol. Adv, Vol. 10 (1992), pp.1-67.

Google Scholar

[5] A. Malaviya and J. Gomes, in: Bioresource Technol, Vol. 99 (2008), pp.6725-6737.

Google Scholar

[6] H.L. Holland, in: Steroids Vol. 64 (1999), pp.178-186.

Google Scholar

[7] S. Hu, G. Genain and R. Azerad, in: Steroids, Vol. 60 (1995), pp.337-352.

Google Scholar

[8] S.B. Mahato and S. Garai, in: Steroids, Vol. 62 (1997), pp.332-345.

Google Scholar

[9] B. Mahato and I. Mazumder, in: Phytochemistry, Vol. 34 (1989), pp.883-898.

Google Scholar

[10] T. Janeczko, A. Świzdor, J. Dmochowska-Gładysz, A. Białońska, Z. Ciunik and E. Kostrzewa-Susłow, in: J Mol Catal B: Enzym, Vol. 82 (2012), pp.24-31.

DOI: 10.1016/j.molcatb.2012.05.009

Google Scholar

[11] M.A. Faramarzi, M. Tabatabaei Yazdi, H. Jahandar, M. Amini and H.R. Monsef-Esfahani, in: J Chem Technol Biotechnol, Vol. 84 (2009), pp.1021-1025.

Google Scholar

[12] M.I. Choudhary, S. Sultan, A. Yasin and S. Farzana, in: Nat Prod Res, Vol. 18 (2004), pp.529-535.

Google Scholar

[13] A. Romano, D. Romano, E. Ragg, F. Costantino, R. Lenna, R. Gandolfi and F.S. Molinari, in: Steroids, Vol. 71 (2006), pp.429-434.

DOI: 10.1016/j.steroids.2006.01.014

Google Scholar

[14] Y.J. Shen, H. Sun, Y.W. Fu and M. Wang, in: Adv. Mater. Res, Vol. 343 (2012), pp.70-73.

Google Scholar

[15] L.H. Huang, J. Li, G. Xu and H.M. Liu, in: Steroids, Vol. 75 (2010), pp.1039-1046.

Google Scholar

[16] Z.G. Xiong, Q. Wei, H.M. Chen, W. J. Xu and X.M. Hu, in: Steroids, Vol. 71 (2006), pp.979-983.

Google Scholar

[17] M. Koshimura, A. Hara and M. Kuniyoshi, in: J Mol Catal B: Enzym, Vol. 67 (2010), pp.72-77.

Google Scholar

[18] V.V. Kollerov, A.A. Shutov, V.V. Fokina, S.A. Gulevskaya and M.V. Donova, in: Appl. Biochem. Micro, Vol. 46 (2010), pp.198-205.

DOI: 10.1134/s0003683810020122

Google Scholar

[19] Y.L. Lin, X. Song J. Fu, J.Q. Lin and Y.B. Qu, in: J. Chem. Technol. Biotechnol., Vol. 84 (2009), pp.789-793.

Google Scholar