Mechanical Properties of the Extruded Mg-Zn-Mn-Ca Alloy for Biomedical Application

Article Preview

Abstract:

As-cast Mg-2Zn-1Mn-xCa (x=0.5 and 1.5 wt.%) alloys are extruded a 553K with an extrusion ratio of 11.3:1 as biomedical materials. The microstructures of the extruded Mg-2Zn-1Mn-xCa alloys are investigated. Microstructures show that the dynamic recrystallization (DRX) occurs after the extruded process. The grain size of the extruded Mg-2Zn-1Mn-1.5Ca alloy is significantly refined compared to that of Mg-2Zn-1Mn-0.5Ca alloy. The tensile strength increases and the elongation decreases with an increase of Ca content. The improvement of tensile strength can be attibuted to the pesence of Mg2Ca phase. However, Mg2Ca phase is bristle, which results in the elongation reducing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-359

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias. Biomaterials, Vol. 27 ( 2006), pp.1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[2] L.P. Xu, E.L. Zhang, K. Yang. J Mater Sci-Mater M, Vol. 20 ( 2009), pp.859-867.

Google Scholar

[3] L. Li, J. Gao, Y. Wang. Surf Coat Tech, Vol. 185 ( 2004), pp.92-98.

Google Scholar

[4] J. Vormann. Mol Aspects Med, Vol. 24 ( 2003), pp.27-37.

Google Scholar

[5] G. Song. Adv Eng Mater, Vol. 7 ( 2005), pp.563-586.

Google Scholar

[6] F. Witte, J. Fischer, J. Nellesen, H. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen. Biomaterials, Vol. 27 ( 2006), pp.1013-1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[7] L.P. Xu, Y.G. N, E.L. Zhang, F. Pan, K. Yang. J Biomed Mater Res A, Vol. 83A ( 2007), pp.703-711.

Google Scholar

[8] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian. Acta Biomater, Vol. 6 ( 2010), pp.626-640.

Google Scholar

[9] J.Z. Ilich, Kerstetter, J. E. J Am Coll Nutr, Vol. 19 ( 2000), pp.715-730.

Google Scholar

[10] C. Serre, M. Papillard, P. Chavassieux, J.C. Voegel. J Biomed Mater Res, Vol. 42 ( 1998), pp.626-633.

Google Scholar

[11] Z. Li, X. Gu, S. Lou, Y. Zheng. Biomaterials, Vol. 29 ( 2008), pp.1329-1344.

Google Scholar

[12] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou. Mater Design, Vol. 29 ( 2008), p.2034-(2037).

Google Scholar

[13] E. Zhang, L. Yang, J. Xu, H. Chen. Acta Biomater, Vol. 6 ( 2010), pp.1756-1762.

Google Scholar

[14] L.B. Tong, M.Y. Zheng, H. Chang, X.S. Hu, K. Wu, S.W. Xu, S. Kamado, Y. Kojima. Mater Sci Eng A, Vol. 523 ( 2009), pp.289-294.

Google Scholar

[15] C. Mercer, W.O. Soboyejio. Scripta Mater, Vol. 35 ( 1996), pp.17-22.

Google Scholar

[16] J.F. Nie, B.C. Muddle. Scripta Mater, Vol. 37 ( 1997), pp.1475-1481.

Google Scholar

[17] Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi. Mater Trans, Vol. ( 2002), pp.2643-2646.

Google Scholar

[18] B. Tang, W. Yu, X. Zeng, W. Ding, M.F. Gray. Mater Sci Eng A, Vol. 489 ( 2008), pp.444-450.

Google Scholar