Studies on Kinetics of Carbon Dioxide Conversion under Atmospheric Pressure

Article Preview

Abstract:

The dynamic experiments about the conversion of CO2 from simulated flue gas were carried out in a bubbling reactor containing a kind of adsorption with M dissolving in ethanol and water at atmospheric pressure. Based on the results of product analysis and electrode potentials, the reaction mechanism of CO2 reduced by M was deduced. The results of dynamic experiments showed that the reaction order was 1.0, the rate constant was 5.91×10-2 s-1, and the apparent activation energy was 23.47 kJ·mol-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3789-3792

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sanz, M. Benıtez and E. Peris: Organometallics, (2010) No. 29, p.275.

Google Scholar

[2] S. Sanz, A. Azua and E. Peris: Dalton Trans., (2010) No. 39, p.6339.

Google Scholar

[3] P. M. Zimmerman, Z. Y. Zhang and C. B. Musgrave: Inorg. Chem., (2010) No. 49, p.8724.

Google Scholar

[4] H. M. Roy, C. M. Wai, T. Yuan, et al: Appl. Catal. A, (2004) No. 271, p.137.

Google Scholar

[5] C. S. Song: Catal. Today, (2006) No. 115, p.2.

Google Scholar

[6] C. S. Yi and N. H. Liu: Organometallics, (1995) No. 14, p.2616.

Google Scholar

[7] T. D. Nixon, M. K. Whittlesey and J. M. J. Williams: Tetrahedron Lett., (2011) No. 52, p.6652.

Google Scholar

[8] Y. F. Xiao and W. B. Li: Physical Chemistry (Tianjin University Press, Tianjin 2005), p.196.

Google Scholar

[9] J. Y. Dong, L. P. Yang and W. H. Hu: Prog. Chem., Vol. 21 (2009) No. 6, p.1217.

Google Scholar

[10] H. C. Brown and B. C. S. Rao: J. Am. Chem. Soc., Vol. 78 (1956) No. 11, p.2582.

Google Scholar

[11] D. M. F. Santos and C. A. C. Sequeira: Renew. Sust. Energ. Rev., (2011) No. 15, p.3980.

Google Scholar

[12] C. P. Fenimore and G. W. Jones: J. Phys. Chem., Vol. 62 (1958) No. 12, p.1578.

Google Scholar

[13] A. J. Bard, L. R. Faulkner and D. Harris (Ed. ): Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, Inc., New York, 2000), p.1.

Google Scholar

[14] A. Kanturk, M. Sari and S. Piskin: Korean J. Chem. Eng., Vol. 25 (2008) No. 6, p.1331.

Google Scholar

[15] Y. Zhao, F. Liu, T. X. Guo, et al: Sci. China Tech. Sci., Vol. 39 (2009) No. 3, p.431.

Google Scholar

[16] K. J. Laidler: Pure Appl. Chem., Vol. 68 (1996) No. 1, p.149.

Google Scholar

[17] S. C. Amendola, S. L. Sharp-Goldman, M. Saleem Janjua, et al: Int. J. Hydrogen Energy, (2000) No. 25, p.969.

Google Scholar

[18] E. Jiménez, B. Lanza, E. Martínez, et al: Atmos. Chem. Phys., (2007) No. 7, p.1565.

Google Scholar