Effects of Fe Content on the Corrosion Behavior of Al-Zn-In-Mg-Ti-Si Sacrificial Anode

Article Preview

Abstract:

The effects of Fe content on the corrosion behavior of Al-Zn-In-Mg-Ti-Si sacrificial anode were investigated by the microstructure observation and electrochemical measurements in order to improve the dissolution feature and electrochemical properties. The results show that the current efficiency of Al-5Zn-0.02In-1Mg-0.05Ti-0.12Si-0.1Fe (wt.%) alloy corroded uniformly reaches 93 % in seawater. It presents the property of lower resistance and higher capacitance. While the Fe content exceeds 0.1 wt.%, the resistance of active dissolution increases gradually. The current efficiency falls down obviously. The results indicate that the electrochemical properties and dissolution feature can be improved significantly by suppressing Fe content under 0.1 wt.% in Al-Zn-In-Mg-Ti-Si alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3793-3797

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Xu and W. Yao, Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode, Constr. Build. Mater. 23 (2009) 2220-2226.

DOI: 10.1016/j.conbuildmat.2008.12.002

Google Scholar

[2] J.C. Norris, J.D. Scantlebury, M.R. Alexander, C.J. Blomfield and R.F. Crundwell, Quantitative analysis of indium and iron at the surface of a commercial Al-Zn-In sacrificial anode, Surf. Int. Anal. 30 (2000) 170-175.

DOI: 10.1002/1096-9918(200008)30:1<170::aid-sia733>3.0.co;2-w

Google Scholar

[3] A.R. Despic, R.M. Stevanovic and A.M. Vorkapice, A new method of obtaining electrochemically active aluminum, in 35th ISE Meeting, CA, University of Berkely, 1984, pp. A2-19.

Google Scholar

[4] S.M.A. Shibli, V.S. Gireesh and S. George, Surface catalysis based on ruthenium dioxide for effective activation of aluminum sacrificial anodes, Corros. Sci. 46 (2004) 819-830.

DOI: 10.1016/s0010-938x(03)00038-6

Google Scholar

[5] A.G. Munoz, S.B. Saidman and J.B. Bessone, Corrosion of an Al-Zn-In alloy in chloride media, Corros. Sci. 44 (2002) 2171-2182.

DOI: 10.1016/s0010-938x(02)00042-2

Google Scholar

[6] I. Gurrappa, Cathodic protection of cooling water systems and selection of appropriate materials, J. Mater. Process. Tech. 166 (2005) 256-267.

DOI: 10.1016/j.jmatprotec.2004.09.074

Google Scholar

[7] J.B. Bessone, D.O. Flamini, Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium, Corros. Sci. 47 (2005) 95-105.

DOI: 10.1016/j.corsci.2004.05.002

Google Scholar

[8] B.M. Ponchel and R. Horst, Performance of Al-Zn-Sn alloy anodes in seawater service, Mater. Prot. 7 (1968) 38-41.

Google Scholar

[9] T. Sakano, K. Toda and M. Hanada, Tests on the effects of indium for high performance aluminum anodes, Mater. Prot. 5 (1966) 45-50.

Google Scholar

[10] GB/T 4948-2002, Sacrificial Anode of Al-Zn-In series alloy, China Standard Press, Beijing, (2002).

Google Scholar

[11] Det Norske Veritas, Cathodic Protection Desigh, Norway, RP-B401, 2010, section 11 and 12.

Google Scholar

[12] X.C. Li, Aluminum alloy material organization and metallographic mapping, BeiJing, (2010).

Google Scholar

[13] G.S. Fu, J.X. Kang, The study on the effects and silicon in commerical purity aluminium, Special Casting & Nonferrous Alloys, 1 (1999) 29-32.

Google Scholar

[14] K. Li, L. Ma, Y.G. Yan, J.H. Wu and G.Z. Chen, Study of low voltage sacrificial anode materials, J. Mater. Prot. 4 (2010) 95-97.

Google Scholar

[15] W. Xiong, G.T. Qi, X.P. Guo, Z.L. Lu, The effect of tellurium on the Al-Zn-In anod, Electrochem. Soc. 158 (2011) 48-54.

Google Scholar

[16] J.L. Ma, J.B. Wen, The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys, Corros. Sci. 51 (2009) 2115-2119.

DOI: 10.1016/j.corsci.2009.05.039

Google Scholar

[17] J. Wen, J. He, X. Lu, Influence of silicon on the corrosion behaviour of Al-Zn-In-Mg-Ti sacrificial anode, Corros. Sci. 53 (2011) 3861-3865.

DOI: 10.1016/j.corsci.2011.07.039

Google Scholar

[18] T.T. Zhao, W. Ran, G.T. Qi, Analysis of Loss in Current Efficiency of Aluminum Alloy Sacrificial Anode in Aqueous Sodium Chloride, J. Mater. Prot. 40 (2007) 58-60.

Google Scholar

[19] Y.L. Zhu, Y.N. Zhan, G.T. Qi, B. Liu, Effect of heat treatment on electrochemical performance of aluminium alloy sacrificial anode, The Chinese Journal of Nonferrous Metals, 16 (2006) 1300-1305.

Google Scholar

[20] C.B. Breslin, W.M. Carroll, The electrochemical behaviour of aluminium activated by gallium in aqueous electrolytes, Corros. Sci. 33 (1992) 1735-1746.

DOI: 10.1016/0010-938x(92)90005-n

Google Scholar

[21] F. P. Ijsseling, General Guidelines for Cormsion Testing of Materials for Marine APPlieations. Br, J. Corros. J. 24 (1989) 55-78.

Google Scholar

[22] S. B. Saidman, S. G. Garcia and J. B. Bessone, Electrochemical behaviour of Al-In Alloys in chloride solutions, J. J. Appl. Electrochem. 25 (1995) 252-258.

DOI: 10.1007/bf00262964

Google Scholar