[1]
J. Xu and W. Yao, Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode, Constr. Build. Mater. 23 (2009) 2220-2226.
DOI: 10.1016/j.conbuildmat.2008.12.002
Google Scholar
[2]
J.C. Norris, J.D. Scantlebury, M.R. Alexander, C.J. Blomfield and R.F. Crundwell, Quantitative analysis of indium and iron at the surface of a commercial Al-Zn-In sacrificial anode, Surf. Int. Anal. 30 (2000) 170-175.
DOI: 10.1002/1096-9918(200008)30:1<170::aid-sia733>3.0.co;2-w
Google Scholar
[3]
A.R. Despic, R.M. Stevanovic and A.M. Vorkapice, A new method of obtaining electrochemically active aluminum, in 35th ISE Meeting, CA, University of Berkely, 1984, pp. A2-19.
Google Scholar
[4]
S.M.A. Shibli, V.S. Gireesh and S. George, Surface catalysis based on ruthenium dioxide for effective activation of aluminum sacrificial anodes, Corros. Sci. 46 (2004) 819-830.
DOI: 10.1016/s0010-938x(03)00038-6
Google Scholar
[5]
A.G. Munoz, S.B. Saidman and J.B. Bessone, Corrosion of an Al-Zn-In alloy in chloride media, Corros. Sci. 44 (2002) 2171-2182.
DOI: 10.1016/s0010-938x(02)00042-2
Google Scholar
[6]
I. Gurrappa, Cathodic protection of cooling water systems and selection of appropriate materials, J. Mater. Process. Tech. 166 (2005) 256-267.
DOI: 10.1016/j.jmatprotec.2004.09.074
Google Scholar
[7]
J.B. Bessone, D.O. Flamini, Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium, Corros. Sci. 47 (2005) 95-105.
DOI: 10.1016/j.corsci.2004.05.002
Google Scholar
[8]
B.M. Ponchel and R. Horst, Performance of Al-Zn-Sn alloy anodes in seawater service, Mater. Prot. 7 (1968) 38-41.
Google Scholar
[9]
T. Sakano, K. Toda and M. Hanada, Tests on the effects of indium for high performance aluminum anodes, Mater. Prot. 5 (1966) 45-50.
Google Scholar
[10]
GB/T 4948-2002, Sacrificial Anode of Al-Zn-In series alloy, China Standard Press, Beijing, (2002).
Google Scholar
[11]
Det Norske Veritas, Cathodic Protection Desigh, Norway, RP-B401, 2010, section 11 and 12.
Google Scholar
[12]
X.C. Li, Aluminum alloy material organization and metallographic mapping, BeiJing, (2010).
Google Scholar
[13]
G.S. Fu, J.X. Kang, The study on the effects and silicon in commerical purity aluminium, Special Casting & Nonferrous Alloys, 1 (1999) 29-32.
Google Scholar
[14]
K. Li, L. Ma, Y.G. Yan, J.H. Wu and G.Z. Chen, Study of low voltage sacrificial anode materials, J. Mater. Prot. 4 (2010) 95-97.
Google Scholar
[15]
W. Xiong, G.T. Qi, X.P. Guo, Z.L. Lu, The effect of tellurium on the Al-Zn-In anod, Electrochem. Soc. 158 (2011) 48-54.
Google Scholar
[16]
J.L. Ma, J.B. Wen, The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys, Corros. Sci. 51 (2009) 2115-2119.
DOI: 10.1016/j.corsci.2009.05.039
Google Scholar
[17]
J. Wen, J. He, X. Lu, Influence of silicon on the corrosion behaviour of Al-Zn-In-Mg-Ti sacrificial anode, Corros. Sci. 53 (2011) 3861-3865.
DOI: 10.1016/j.corsci.2011.07.039
Google Scholar
[18]
T.T. Zhao, W. Ran, G.T. Qi, Analysis of Loss in Current Efficiency of Aluminum Alloy Sacrificial Anode in Aqueous Sodium Chloride, J. Mater. Prot. 40 (2007) 58-60.
Google Scholar
[19]
Y.L. Zhu, Y.N. Zhan, G.T. Qi, B. Liu, Effect of heat treatment on electrochemical performance of aluminium alloy sacrificial anode, The Chinese Journal of Nonferrous Metals, 16 (2006) 1300-1305.
Google Scholar
[20]
C.B. Breslin, W.M. Carroll, The electrochemical behaviour of aluminium activated by gallium in aqueous electrolytes, Corros. Sci. 33 (1992) 1735-1746.
DOI: 10.1016/0010-938x(92)90005-n
Google Scholar
[21]
F. P. Ijsseling, General Guidelines for Cormsion Testing of Materials for Marine APPlieations. Br, J. Corros. J. 24 (1989) 55-78.
Google Scholar
[22]
S. B. Saidman, S. G. Garcia and J. B. Bessone, Electrochemical behaviour of Al-In Alloys in chloride solutions, J. J. Appl. Electrochem. 25 (1995) 252-258.
DOI: 10.1007/bf00262964
Google Scholar