[1]
TTAK. KO-10. 0418, Performance Evaluation Method of Face Extraction and Identification Algorithm for Intelligent Robots: Part 1 Performance Evaluation of Recognition Algorithm, (2010).
Google Scholar
[2]
TTAK. KO-10. 0419, Performance Evaluation Method of Face Extraction and Identification Algorithm for Intelligent Robots: Part 2. System Level Performance Evaluation using Human Model (mannequin) of Human Face Recognition, (2010).
Google Scholar
[3]
TTAK. KO-10. 0507, Performance Evaluation Method of Face Extraction and Identification Algorithm for Intelligent Robots: Part 3. Performance Evaluation of Face Recognition using Face Photos, (2011).
Google Scholar
[4]
http: /www. cie. co. at.
Google Scholar
[5]
M.Y. Cho, Y.S. Jeong, B.T. Chun, A Study on Face Recognition Performance Comparison of Real Images with Images from LED Monitor, Journal of the Institute of Electronics Engineers of Korea, Vol. 50, No. 5, p.1164~1169, May (2013).
DOI: 10.5573/ieek.2013.50.5.144
Google Scholar
[6]
P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi. The feret evaluation methodology for face recognition algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), (2000).
DOI: 10.1109/34.879790
Google Scholar
[7]
Hyoung-Soo Lee, Sungsoo Park, Bong-Nam Kang, Jongju Shin, Ju-Young Lee, Hongmo Je, Bongjin Jun, Daijin Kim, The POSTECH Face Database (PF07) and Performance Evaluation, in Proc. IEEE Int. Conf. Automatic Face & Gesture Recognition, Sep. 2008, p.1.
DOI: 10.1109/afgr.2008.4813378
Google Scholar
[8]
T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), (2003).
DOI: 10.1109/tpami.2003.1251154
Google Scholar
[9]
KS A 3011 Recommended levels of illumination.
Google Scholar