A Low-Cost Low-Power Capacitive Humidity Sensor in CMOS Technology

Article Preview

Abstract:

This paper presents a capacitive humidity sensor in CMOS technology. The humidity sensor element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication cost. The sensor interface is based on a delta-sigma converter and can be easily reconfigured to compensate for process variation of the sensing element. The proposed humidity sensor is fabricated in 0.16μm standard CMOS process and the chip occupies 0.25mm2. The measurement result shows that this humidity sensor acquires a resolution of 0.1%RH in the range of 20%RH to 90%RH. The interface achieves a 12.5-bits capacitance-to-digital conversion and consumes only 9.6μW power at 1.2V supply voltage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1842-1846

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.T. Okada: Humidity Sensor: Types, Nanomaterials and Environmental Monitoring, New York, Nova, (2011).

Google Scholar

[2] L. Gu, Q.A. Huang, A novel capacitive-type humidity sensor using CMOS fabrication technology, Sensors and Actuators B: Chemical, 2004, 99(2): 491-498.

DOI: 10.1016/j.snb.2003.12.060

Google Scholar

[3] C.L. Zhao, M. Qin, Q.A. Huang, A fully packaged CMOS interdigital capacitive humidity sensor with polysilicon heaters, Sensors Journal, IEEE, 2011, 11(11): 2986-2992.

DOI: 10.1109/jsen.2011.2154325

Google Scholar

[4] C.L. Dai, D.H. Lu, Fabrication of a micro humidity sensor with polypyrrole using the CMOS process, 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), IEEE, 2010: 110-113.

DOI: 10.1109/nems.2010.5592158

Google Scholar

[5] B. Wang, M. K. Law, A. Bermak, A low-cost capacitive relative humidity sensor for food moisture monitoring application, 4th Asia Symposium on Quality Electronic Design, IEEE, 2012: 95-99.

DOI: 10.1109/acqed.2012.6320483

Google Scholar

[6] H. Looyenga, Dielectric constants of heterogeneous mixtures, Physica, 1965, 31(3): 401-406.

DOI: 10.1016/0031-8914(65)90045-5

Google Scholar

[7] P.J. Schubert, J. H. Nevin, A polyimide-based capacitive humidity sensor, IEEE Transactions on Electron Devices, 1985, 32(7): 1220-1223.

DOI: 10.1109/t-ed.1985.22104

Google Scholar

[8] Y. Wang, J. N. Chen, D.M. Ke, et al, Modeling of a CMOS capacitive relative humidity sensor, 1st International Workshop on Education Technology and Computer Science, IEEE, 2009, 3: 209-212.

DOI: 10.1109/etcs.2009.573

Google Scholar

[9] D. Cirmirakis, A. Demosthenous, N. Saeidi, et al, Humidity-to-frequency sensor in CMOS technology with wireless readout, Sensors Journal, IEEE, 2013, 13(3): 900-908.

DOI: 10.1109/jsen.2012.2217376

Google Scholar

[10] N. Saeidi, J. Strutwolf, A. Marechal, et al, A Capacitive Humidity Sensor Suitable for CMOS Integration, Sensors Journal, IEEE, (2013).

DOI: 10.1109/jsen.2013.2270105

Google Scholar

[11] Z. Tan, R. Daamen, A. Humbert, et al, A 1. 8 V 11μW CMOS smart humidity sensor for RFID sensing applications, 2011 IEEE Asian Solid State Circuits Conference (A-SSCC), IEEE, 2011: 105-108.

DOI: 10.1109/asscc.2011.6123615

Google Scholar

[12] Y. Chae, G. Han, Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator, IEEE Journal of Solid-State Circuits, 2009, 44(2): 458-472.

DOI: 10.1109/jssc.2008.2010973

Google Scholar

[13] S. Xia, K. Makinwa, S. Nihtianov, A capacitance-to-digital converter for displacement sensing with 17b resolution and 20μs conversion time, 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),. IEEE, 2012: 198-200.

DOI: 10.1109/isscc.2012.6176973

Google Scholar

[14] D.Y. Shin, H. Lee, S. Kim, A delta–sigma interface circuit for capacitive sensors with an automatically calibrated zero point, IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58(2): 90-94.

DOI: 10.1109/tcsii.2010.2104015

Google Scholar

[15] H. Danneels, K. Coddens, G. Gielen, A fully-digital, 0. 3 V, 270 nW capacitive sensor interface without external references, 2011 Proceedings of the ESSCIRC, IEEE, 2011: 287-290.

DOI: 10.1109/esscirc.2011.6044963

Google Scholar