Influence of Fe2O3 on Structural and Magnetic Properties of LaFeO3/Fe2O3 and Mn2O3/Fe2O3 Magnetic Nano-Composites

Article Preview

Abstract:

LaFeO3/Fe2O3 and Mn2O3/Fe2O3 magnetic nanocomposites have been prepared by a modified polyacrylamide gel route. The XRD result indicates the formation of LaFeO3/Fe2O3 and Mn2O3/Fe2O3 nanocomposites. Scanning electron microscope (SEM) observation shows that the LaFeO3/Fe2O3 particles appear to be regularly spherical in shape and highly uniform in size with a diameter of ~ 80 nm, while the Mn2O3/Fe2O3 sample exhibits a relatively broad particle size distribution with an average particle size centered around 20-60 nm. Result of vibrating sample magnetometer (VSM) of LaFeO3/Fe2O3 magnetic nanocomposites revealed that coercivity values decreased with the increase sintering temperature. However, the coercivity values of Mn2O3/Fe2O3 magnetic nanocomposites appear to an anomaly phenomenon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[2] D. L. Leslie-Pelecky, R. D. Rieke, Magnetic Properties of Nanostructured Materials, Chem. Mater. 8 (1996) 1770-1783.

DOI: 10.1021/cm960077f

Google Scholar

[3] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).

DOI: 10.1126/science.287.5460.1989

Google Scholar

[4] R. Weissleder, A. Bogdanov, E. A. Neuwelt, M. Papisov, Long-circulating iron oxides for MR imaging, Adv. Drug. Delivery Rev. 16 (1995) 321-334.

DOI: 10.1016/0169-409x(95)00033-4

Google Scholar

[5] R. Weissleder, A. Moore, U. Mahmood, R. Bhorade, H. Benveniste, E. A. Chiocca, J. P. Basilion, In vivo magnetic resonance imaging of transgene expression, Nat. Med. 6 (2000) 351-355.

DOI: 10.1038/73219

Google Scholar

[6] K. Raj, B. Moskowitz, R. Casciari, Advances in ferrofluid technology, J. Magn. Magn. Mater. 149 (1995) 174-180.

Google Scholar

[7] J. Liu, S. Z. Qiao , Q. H. Hu , G. Q. Lu, Magnetic nanocomposites with mesoporous structures: synthesis and applications, Small, 7 (2011) 425-443.

DOI: 10.1002/smll.201001402

Google Scholar

[8] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706-8715.

DOI: 10.1021/ja00072a025

Google Scholar

[9] X. Peng, J. Wickham, A. P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:  Focusing, of Size Distributions, J. Am. Chem. Soc. 120 (1998) 5343-5344.

DOI: 10.1021/ja9805425

Google Scholar

[10] C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. ReV. Mater. Sci. 30 (2000) 545-610.

DOI: 10.1146/annurev.matsci.30.1.545

Google Scholar

[11] D Treves, Studies on Orthoferrites at the Weizmann Institute of Science, J. Appl. Phys. 36 (1965) 1033.

Google Scholar

[12] S. H. Kim, B. J. Choi, G. H. Lee, S. J. Oh, B. Kim, H. C. Choi, J. Park, Y. Chang. Ferrimagnetism in Υ-Manganese Sesquioxide (γ-Mn2O3) Nanoparticles, J. Korean Phys. Soc. 46 (2005) 941-944.

Google Scholar

[13] S.F. Wang, H. Yang, T. Xian, X.Q. Liu, Size-controlled synthesis and photocatalytic properties of YMnO3 nanoparticles, Catal. Commun. 12 (2011) 625-628.

DOI: 10.1016/j.catcom.2010.11.023

Google Scholar

[14] H. Yang, T. Xian, Z. Q. Wei, J. F. Dai, J. L. Jiang, W. J. Feng, Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route, J. Sol-Gel Sci. Technol. 58 (2011) 238-243.

DOI: 10.1007/s10971-010-2383-6

Google Scholar

[15] H. Yang, S.F. Wang, T. Xian, Z.Q. Wei, W.J. Feng, Fabrication and photocatalytic activity of YMn2O5 nanoparticles, Mater. Lett. 65 (2011) 884-886.

DOI: 10.1016/j.matlet.2010.11.068

Google Scholar

[16] G. J. Lin, H. Yang, T. Xian, Z. Q. Wei, J. L. Jiang, W. J. Feng, Synthesis of TbMnO3 nanoparticles via a polyacrylamide gel route, Adv. Powder Technol. 23 (2012) 35-39.

DOI: 10.1016/j.apt.2010.12.002

Google Scholar

[17] S. Maensiri, M. Sangmanee, and A. Wiengmoon, Magnesium Ferrite (MgFe2O4) Nanostructures Fabricated by Electrospinning, Nanoscale Res. Lett. 4 (2008) 221-228.

DOI: 10.1007/s11671-008-9229-y

Google Scholar

[18] M. Sivakumar, A. Gedanken, W. Zhong, Y. H. Jiang, Y. W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, and I. Nowik, Sonochemical synthesis of nanocrystalline LaFeO3, J. Mater. Chem. 14 (2004) 764-769.

DOI: 10.1039/b310110j

Google Scholar

[19] Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. dai, W.H. Song. Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method, J. Magn. Magn. Mater. 320 (2008) 2746-2751.

DOI: 10.1016/j.jmmm.2008.06.009

Google Scholar