An Optimized Method for the Preparation of Monascus purpureus DNA for Genome Sequencing

Article Preview

Abstract:

More and more attention has been paid to filamentous fungal evolution, metabolic pathway and gene functional analysis via genome sequencing. However, the published methods for the extraction of fungal genomic DNA were usually costly or inefficient. In the present study, we compared five different DNA extraction protocols: CTAB protocol with some modifications, benzyl chloride protocol with some modifications, snailase protocol, SDS protocol and extraction with the E.Z.N.A. Fungal DNA Maxi Kit (Omega Bio-Tek, USA). The CTAB method which we established with some modification in several steps is not only economical and convenient, but also can be reliably used to obtain large amounts of highly pure genomic DNA from Monascus purpureus for sequencing with next-generation sequencing technologies (Illumina and 454) successfully.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

379-383

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Li, Y. C. Shao, Q. Li, S. Yang, F. S. Chen, Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7, FEMS Microbiol. Lett. 308 (2010) 108-114.

DOI: 10.1111/j.1574-6968.2010.01992.x

Google Scholar

[2] Y. C. Shi, T. M. Pan, Beneficial effects of Monascus purpureus NTU 568-fermented products: a review, Appl. Microbiol. Biotechnol. 90 (2011) 1207-1217.

DOI: 10.1007/s00253-011-3202-x

Google Scholar

[3] S. A. Mapari, U. Thrane, A. S. Meyer, Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 28 (2010) 300-307.

DOI: 10.1016/j.tibtech.2010.03.004

Google Scholar

[4] Y. Feng, Y. C. Shao, F. S. Chen, Monascus pigments, Appl. Microbiol. Biotechnol. 96 (2012) 1421-1440.

DOI: 10.1007/s00253-012-4504-3

Google Scholar

[5] A. Endo, Monacolin K, a new hypocholesterolemic agent produced by Monascus species, J. Antibiot. 32 (1979) 852-854.

DOI: 10.7164/antibiotics.32.852

Google Scholar

[6] Y. P. Chen, C. P. Tseng, L. L. Liaw, C. L. Wang, I. C. Chen, W. J. Wu, M. D. Wu, G. F. Yuan, Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus, J. Agric. Food. Chem. 56 (2008) 5639-5646.

DOI: 10.1021/jf800595k

Google Scholar

[7] H. Takahashi, M. Tiba, T. Yamazaki, F. Noguchi, On the site of action of γ-aminobutyric acid on blood pressure, Jpn. J. Physiol. 8 (1958) 378-390.

DOI: 10.2170/jjphysiol.8.378

Google Scholar

[8] T. Shimizu, H. Kinoshita, S. Ishihara, K. Sakai, S. Nagai, T. Nihira, Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus, Appl. Environ. Microbiol. 71 (2005) 3453-3457.

DOI: 10.1128/aem.71.7.3453-3457.2005

Google Scholar

[9] T. Shimizu, H. Kinoshita, T. Nihira, Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus, Appl. Environ. Microbiol. 73 (2007) 5097-5103.

DOI: 10.1128/aem.01979-06

Google Scholar

[10] B. M. Pryor, R. L. Gilbertson, Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences, Mycol. Res. 104 (2000) 1312-1321.

DOI: 10.1017/s0953756200003002

Google Scholar

[11] M. A. Saghai-Maroof, K. M. Soliman, R. A. Jorgensen, R. W. Allard, Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, andpopulation dynamics, Proc. Natl. Acad. Sci. U. S. A. 81 (1984) 8014-8018.

DOI: 10.1073/pnas.81.24.8014

Google Scholar

[12] H. Zhu, F. Qu, L. H. Zhu, Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride, Nucleic. Acids. Res. 21 (1993) 5279-5280.

DOI: 10.1093/nar/21.22.5279

Google Scholar

[13] E. A. Duell, S. Inoue, M. F. Utter, Isolation and properties of intact mitochondria from spheroplasts of yeast, J. Bacteriol. 88 (1964) 1762-1773.

DOI: 10.1128/jb.88.6.1762-1773.1964

Google Scholar

[14] Y. An, J. Yang, X. X. Xu, G. Liu, Construct cosmid libraries by isolating large genomic DNA fragments from Monascus rubber, Acta. Microbiologica. Sinica. 49 (2009) 1385-1388.

Google Scholar

[15] Y. C. Kim, S. L. Morrison, A rapid and economic in-house DNA purification method using glass syringe filters, PLoS One 4 (2009) e7750.

DOI: 10.1371/journal.pone.0007750

Google Scholar

[16] Z. Q. Zhang, M. Ishaque, Evaluation of methods for isolation of DNA from slowly and rapidly growing mycobacteria, Int. J. Lepr. Other. Mycobact. Dis. 65 (1997) 469-476.

Google Scholar

[17] J. T. Belisle, M. G. Sonnenberg, Isolation of genomic DNA from mycobacteria, Methods in Mol. Biol. 101 (1998) 31-44.

DOI: 10.1385/0-89603-471-2:31

Google Scholar

[18] J. Odumeru, A. Gao, S. Chen, M. Raymond, L. Mutharia, Use of the bead beater for preparation of Mycobacterium paratuberculosis template DNA in milk, Can. J. Vet. Res. 65 (2001) 201-205.

DOI: 10.1016/j.mimet.2006.10.019

Google Scholar

[19] N. R. Morris, Preparation of large molecular weight DNA from the fungus Aspergillus nidulans, J. Gen. Microbiol. 106 (1978) 387-389.

DOI: 10.1099/00221287-106-2-387

Google Scholar

[20] B. W. Bainbridge, C. L. Spreadbury, F. G. Scalise, J. Cohen, Improved methods for the preparation of high molecularweight DNA from large and small scale cultures of filamentous fungi, FEMS Microbiol. Lett. 54 (1990) 113-117.

DOI: 10.1111/j.1574-6968.1990.tb03981.x

Google Scholar