[1]
W. Song, M. Guo, Quality variations of poultry litter biochar generated at different pyrolysis temperatures, J. Anal. Appl. Pyrolysis. 94 (2012) 138–145.
DOI: 10.1016/j.jaap.2011.11.018
Google Scholar
[2]
Y. Fernández, J. Menéndez, Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes, J. Anal. Appl. Pyrolysis. 91 (2011) 316–322.
DOI: 10.1016/j.jaap.2011.03.010
Google Scholar
[3]
L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J. Hazard. Mater. 256 (2013) 1–9.
DOI: 10.1016/j.jhazmat.2013.04.015
Google Scholar
[4]
V.C. Srivastava, I.D. Mall, I.M. Mishra, Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA), Chem. Eng. J. 132 (2007) 267–278.
DOI: 10.1016/j.cej.2007.01.007
Google Scholar
[5]
A. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chem. Eng. J. 91 (2003) 87–102.
Google Scholar
[6]
B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Technol. 42 (2008) 5137–5143.
DOI: 10.1021/es8002684
Google Scholar
[7]
X.Y. Yu, G.G. Ying, R.S. Kookana, Reduced plant uptake of pesticides with biochar additions to soil, Chemosphere. 76 (2009) 665–671.
DOI: 10.1016/j.chemosphere.2009.04.001
Google Scholar
[8]
T.T. Wang, J. Cheng, X.J. Liu, W. Jiang, C.L. Zhang, X.Y. Yu, Effect of biochar amendment on the bioavailability of pesticide chlorantraniliprole in soil to earthworm, Ecotox. Environ. Safe. 83 (2012) 96–101.
DOI: 10.1016/j.ecoenv.2012.06.012
Google Scholar
[9]
H. Zhang, K. Lin, H. Wang, J. Gan, Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene, Environ. Pollut. 158 (2010) 2821–2825.
DOI: 10.1016/j.envpol.2010.06.025
Google Scholar
[10]
P. Sugumaran, S. Seshadri, Evaluation of selected biomass for charcoal production, J. Sci. Ind. Res. 68 (2009) 719–723.
Google Scholar
[11]
G.C. Matteson, B.M. Jenkins, Food and processing residues in California: Resource assessment and potential for power generation, Bioresour. Technol. 98 (2007) 3098–3105.
DOI: 10.1016/j.biortech.2006.10.031
Google Scholar
[12]
J. Lehmann, S. Joseph, (Eds), Biochar for environmental management: Science and technology, first edi., Earthscan, Lodon, (2009).
Google Scholar
[13]
N.Z. Rebitanim, W.A. Wan Ab Karim Ghani, D. Khalid Mahmoud, N.A. Rebitanim, M.A. Mohd Salleh, Adsorption of methylene blue by agricultural solid waste of pyrolyzed EFB biochar, Journal of Purity, Utility Reaction and Environment. 1 (2012).
DOI: 10.1016/j.rser.2012.12.051
Google Scholar
[14]
Information on http: /www. bernas. com. my/c/ document_library/, (2011).
Google Scholar
[15]
W. Azlina, D. Wan Ab Karim Ghani, K. Amin, D. Matori, G. da Silva, Physical and thermochemical characterisation of malaysian biomass ashes, The Journal of the Institution of Engineers. 71 (2010) 9-18.
Google Scholar
[16]
Information on http: /www. mardi. gov. my/c/ document_library/, (2011).
Google Scholar
[17]
A. Masulili, W.H. Utomo, M.S. Syechfani, Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia, J. Agric. Sci. 2 (2010).
DOI: 10.5539/jas.v2n1p39
Google Scholar
[18]
S.T. Shafie, M.A. Mohd Salleh, L. Lek Hang, M.M. Rahman, W.A. Wan Abdul Karim Ghani, Effect of pyrolysis temperature on the biochar nutrient and water retention capacity, Journal of Purity, Utility Reaction and Environment, 1 (2012) 323-337.
Google Scholar
[19]
B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127-133.
DOI: 10.1016/j.chemosphere.2009.02.004
Google Scholar
[20]
Y. Chun, G.Y. Sheng, C.T. Chiou, B.S. Xing, Compositions and sorptive properties of crop residue-derived chars, Environ. Sci. Technol. 38 (2004) 4649–4655.
DOI: 10.1021/es035034w
Google Scholar