Generalized Projective Synchronization of Diverse Structures Hyperchaotic Systems with Unknown Parameters

Article Preview

Abstract:

In this paper, the generalized projective synchronization for a general class of hyperchaotic systems is investigated. A systematic, powerful and concrete scheme is developed to investigate the generalized projective synchronization between the drive system and response system based on the feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1095-1099

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pecora L M, Carroll T L. Synchronization in chaotic systems. Phys. Rev. Lett, 1990, 64(8): 821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] Yan Z. Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 2005, 168: 1239–1250.

DOI: 10.1016/j.amc.2004.10.016

Google Scholar

[3] Zhang H, Ma X, Li M, Zou J. Controlling and tracking hyperchaotic Rössler system via active back-stepping design, Chaos Soliton Fractals, 2005, 26: 353–361.

DOI: 10.1016/j.chaos.2004.12.032

Google Scholar

[4] Lin J S, Liao T L, Yan J J, Hung M L. Exponential synchronization of chaotic systems subject to uncertainties in the control input. Appl. Math. Comput., 2010, 216: 2441–2449.

DOI: 10.1016/j.amc.2010.03.089

Google Scholar

[5] Souza F O, Palhares R M, Mendes E M A M, Torres L A B. Robust H∞ control for master-slave synchronization of Lur'e systems with time-delay feedback control. Int. J. Bifurcation and Chaos, 2008, 18: 1161-1173.

DOI: 10.1142/s0218127408020896

Google Scholar

[6] Yan J P, Li C P. Generalized projective synchronization of a unified chaotic system. Chaos Solitons & Fractals, 2005, 26(4): 1119-1124.

DOI: 10.1016/j.chaos.2005.02.034

Google Scholar

[7] Li Y X, Tang W K S, Chen G R. Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 2005, 15(): 3367-3375.

DOI: 10.1142/s0218127405013988

Google Scholar

[8] Li Y X, Tang W K S, Chen G R. Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circ. Theory. Appl, 2005, 33(4): 235-251.

DOI: 10.1002/cta.318

Google Scholar