Dynamic Model and its Application in Economic Forecasting

Article Preview

Abstract:

The economic system is an extremely complex system, internal systems affected by many factors, highly nonlinear, time delay and other characteristics. This has brought great difficulties to the economic modeling and forecasting system. This paper presents an improved modeling and forecasting methods, recombinant methods by introducing chain data and add data growth economic indicators in an artificial neural network training, the time series data input window to solve practical engineering problems forecasts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1964-1968

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. D. Bekiros, A. Paccagnini: Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models, Computational Statistics & Data Analysis, Vol. 71 (2014), pp.298-323.

DOI: 10.1016/j.csda.2013.09.018

Google Scholar

[2] A. Kurmaş, S. Başer, M. G. Chadwick: Short-term inflation forecasting models for Turkey and a forecast combination analysis, Economic Modelling, Vol. 33 (2013), pp.312-325.

DOI: 10.1016/j.econmod.2013.04.001

Google Scholar

[3] K. Boudt, J. Daníelsson, S. Laurent: Robust forecasting of dynamic conditional correlation GARCH models, International Journal of Forecasting, Vol. 29 (2013), pp.244-257.

DOI: 10.1016/j.ijforecast.2012.06.003

Google Scholar

[4] L. F. Pau: A controlled linearized kalman filter for economic forecasting and adaptive modeling, Automatica, Vol. 14 (1978), pp.119-128.

DOI: 10.1016/0005-1098(78)90016-x

Google Scholar

[5] K. H. Kim: Density forecasting through disaggregation, International Journal of Forecasting, Vol. 27 (2011), pp.394-412.

DOI: 10.1016/j.ijforecast.2010.04.007

Google Scholar

[6] J. H. Stock, M. W. Watson: Forecasting with Many Predictors, Handbook of Economic Forecasting, Vol. 1 (2006), pp.515-554.

DOI: 10.1016/s1574-0706(05)01010-4

Google Scholar

[7] M. P. Clements, D. F. Hendry: Forecasting with Breaks, Handbook of Economic Forecasting, Vol. 1 (2006), pp.605-657.

DOI: 10.1016/s1574-0706(05)01012-8

Google Scholar

[8] E. M. H. Lin, C. W. S. Chen, R. Gerlach: Forecasting volatility with asymmetric smooth transition dynamic range models, International Journal of Forecasting, Vol. 28 (2012), pp.384-399.

DOI: 10.1016/j.ijforecast.2011.09.002

Google Scholar

[9] M. P. Clements, D. F. Hendry: Forecasting Annual UK Inflation Using an Econometric Model over 1875–1991, Frontiers of Economics and Globalization, Vol. 3 (2008), pp.3-39.

DOI: 10.1016/s1574-8715(07)00201-1

Google Scholar

[10] S. Laurent, J. V. K. Rombouts, F. Violante: On loss functions and ranking forecasting performances of multivariate volatility models, Journal of Econometrics, Vol. 173 (2013), pp.1-10.

DOI: 10.1016/j.jeconom.2012.08.004

Google Scholar

[11] X. Luo, H. Han, J. E. Zhang: Forecasting the term structure of Chinese Treasury yields, Pacific-Basin Finance Journal, Vol. 20 (2012), pp.639-659.

DOI: 10.1016/j.pacfin.2012.02.002

Google Scholar

[12] G. Cubadda, B. Guardabascio: A medium-N approach to macroeconomic forecasting, Economic Modelling, Vol. 29 (2012), pp.1099-1105.

DOI: 10.1016/j.econmod.2012.03.027

Google Scholar