[1]
L. H. Yang, L. Liu and P. He: Control of Carbon content and temperature at end point for converter process based on 2-output neural network. Iorn and Steel, Vol. 37-11(2002),pp.13-15.
Google Scholar
[2]
H. S. Lu and J. Z. Cao: Scheduling of BOF producing Molton steel for CSP and PM. International Conference on Computational Intelligence and Software Engineering, (2009), pp.1-3.
DOI: 10.1109/cise.2009.5364345
Google Scholar
[3]
P. Dario and P. Macro: Production scheduling in steelmaking-continuous plant. Computers and Chemical Engineering, Vol. 28-12(2004), pp.2823-2835.
DOI: 10.1016/j.compchemeng.2004.08.031
Google Scholar
[4]
C. Unal, T. Murat and D. Feridun: A thermodynamic analysis of a steel production step carried out in the ladle furnace. Applied Thermal Engineering, Vol. 21-8(2001), pp.643-655.
DOI: 10.1016/s1359-4311(00)00076-4
Google Scholar
[5]
S. M. Xie, K. sun and C. Chen: BOF endpoint prediction based on RBF neural network. Journal of Shengyang University of Technology, Vol. 28-4(2006), pp.405-408.
Google Scholar
[6]
M. Han, L. W. Jiang and Y. Zhao: endpoint prediction model of basic oxygen furnace steelmaking based on PSO-ICA and RBF neural network. Information and control, Vol. 39-1(2010), pp.82-87.
DOI: 10.1109/icicip.2010.5565236
Google Scholar
[7]
L. Z. Chang and Z. B. Li: study on BP neural net based converter static control model. Steelmaking, Vol. 22-6(2006), pp.41-44.
Google Scholar
[8]
S. M. Xie, X. W. Gao and T. Y. Chai: BOF endpoint prediction based on gray model. Journal of Iron and Steel Research, Vol. 11-4(1999), pp.46-51.
Google Scholar
[9]
D. F. Wang and H. W. Hong: Study on application of artificial neural network in end-point prediction of BOF steelmaking. Research on Iron and Steel, Vol. 143-2(2005), pp.27-31.
Google Scholar
[10]
L. P. Qu, Y. Y. Qu ,J. Bai and H. W. Zhang: Study on intelligent control strategy of BOF. Metallurgical Industry Automation, Vol. 43-3(2007), pp.24-27.
Google Scholar
[11]
S. M. Xie, J. Tao and T. Y. Chai: Intelligent method for BOF endpoint phosphorus estimation. Control Theory & Applications, Vol. 20-4(2003), pp.55-59.
Google Scholar
[12]
H. Tu, X. Hong, S. B. Shao and G. C. Jiang: Development of the dynamic Mn & P end-point control technology for BOF steelmaking. Shanghai Metals, Vol. 24-2(2002), pp.27-30.
Google Scholar
[13]
Y. L. Yang, Z. Xu and W. H. Wang: applicaiton of Matlab based RBF neural network. Mentallurgical Collections, Vol. 184-6(2009), pp.39-44.
Google Scholar
[14]
X.Y. Ding, J. Wang and S.P. Yang: Predictive model of BOF based on LM-BP neural network combining with learning rate. Second International Symposium on Knowledge Acuiqision and Modeling(2009), pp.155-157.
DOI: 10.1109/kam.2009.192
Google Scholar
[15]
J. Tao , S. S. Ouyang and X. Wang: Intelligent method for BOF endpoint [P] & [Mn] estimation. Proccedings of the 6th World Congress on Intelligent Control and Automation(2006), pp.7802-7806.
DOI: 10.1109/wcica.2006.1713488
Google Scholar