[1]
Curran, G. P., Fink, C. E., Gorin, E. CO2 Acceptor Gasification Process:studies of acceptor properties, Adv. Chem. Ser. 1967, 69: 141-165.
DOI: 10.1021/ba-1967-0069.ch010
Google Scholar
[2]
K. Johnsen, H.J. Ryu, J.R. Grace, et al. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chemical Engineering Science, 2006, 61: 1195 – 1202.
DOI: 10.1016/j.ces.2005.08.022
Google Scholar
[3]
Frank Zeman. Effect of steam hydration on performance of lime sorbent for CO2 capture. International Journal of Greenhouse Gas Control 2, 2008: 203-209.
DOI: 10.1016/s1750-5836(07)00115-6
Google Scholar
[4]
A. Silaban, D.P. Harrison. High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2(g). Chem. Eng. Comm., 1995, 137: 177-190.
DOI: 10.1080/00986449508936375
Google Scholar
[5]
A. Silaban, M. Narcida, D.P. Harrison. Characteristics of the reversible reaction between CO2(g) and calcined dolomite. Chem. Eng. Comm., 1996, 146: 149-162.
DOI: 10.1080/00986449608936487
Google Scholar
[6]
QIAO Chunzhen, XIAO Yunhan, TIAN Wendong, YANG Shaojun. Repetitive calcination-carbonation capability of Ca-based CO2 absorbent. Journal of Chemical Industry and Engineering, 2006, 57(12): 2953-2958.
Google Scholar
[7]
Abanades JC, Alvarez D. Conversion limits in the reaction of CO2 with lime. Energy Fuels 2003, 17: 308-15.
DOI: 10.1021/ef020152a
Google Scholar
[8]
Salvador C, Lu D, Antliony E J, et al. Enhancement of CaO for CO2 capture in an FBC environment [J]. Chemical Engineering Journal, 2003, 96(1-3): 187-195.
DOI: 10.1016/j.cej.2003.08.011
Google Scholar
[9]
A. Silaban, M. Narcida, D.P. Harrison. Characteristics of the reversible reaction between CO2(g) and calcined dolomite. Chem. Eng. Comm., 1996, 146: 149-162.
DOI: 10.1080/00986449608936487
Google Scholar
[10]
Juan Carlos Abanades. The maximum capture efficiency of CO2 using a carbonation /calcination cycle of CaO/ CaCO3. Chemical Engineering Journal. 2002, 90: 303-306.
DOI: 10.1016/s1385-8947(02)00126-2
Google Scholar
[11]
LI Yingjie, ZHAO Changsui. Carbonation Characterist -ics in Calcium-sorbents Cyclic Calcination/Carbo- nation Reaction Process. Proceedings of the CSEE, 2008, 28(2), 55-60.
Google Scholar
[12]
Li Yingjie, Zhao Changsui. Carbonation characteristics in calcium-sorbents cyclic calcination /carbonation reaction process[J]. Proceedings of the CSEE, 2008, 28(2): 55 -60.
Google Scholar
[13]
QIAO Chunzhen, WANG Baoli, XIAO Yunhan. Activity decline of Ca-based CO2 absorbent in repetitive calcination- carbonation. Journal of Chemical Industry and Engineering, 2010, 61(3), 720-724.
Google Scholar
[14]
J. Blamey, E.J. Anthony, J. Wang, P.S. Fennell. The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 2010, 36 : 260–279.
DOI: 10.1016/j.pecs.2009.10.001
Google Scholar
[15]
D. Dasgupta, K. Mondal, T. Wiltowski. Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications[J]. International Journal of Hydrogen Energy, 2008, (33) : 303-311.
DOI: 10.1016/j.ijhydene.2007.07.015
Google Scholar
[16]
Marquis DL. Reactivation of spent CFB limestone by hydration MASc thesis, University of New Brunswick. Fredericton, New Brunswick. Canada. (1992).
Google Scholar
[17]
Karin Laursen, Wenli Duo, John R. Grace et al. Characterization of steam reactivation mechanisms in limestones and spent calcium sorbents[J]. Fuel, 2001, 80: 1293-1306.
DOI: 10.1016/s0016-2361(01)00011-4
Google Scholar
[18]
Frank Zeman. Effect of steam hydration on performance of lime sorbent for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2008, 2: 203-209.
DOI: 10.1016/s1750-5836(07)00115-6
Google Scholar
[19]
Sun P, Grace JR, Lim CJ, Anthony EJ. Investigation of attempts to improve cyclic CO2 capture by sorbent hydration and modification. Industrial & Engineering Chemistry Research 2008; 47(6): 2024–32.
DOI: 10.1021/ie070335q
Google Scholar
[20]
Yin Wang, Shiying Lin, Yoshizo Suzuki. Effect of CaO content on hydration rates of Ca-based sorbents at high temperature. Fuel Processing Technology 2008, 89: 220 – 226.
DOI: 10.1016/j.fuproc.2007.09.009
Google Scholar