[1]
Chen, L. F., C. K. Ong, C. P. Neo, et al., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, (2004).
Google Scholar
[2]
Hasar, U. C. and E. A. Oral, A metric function for fast and accurate permittivity determination of low-to-high-loss materials from reflection measurements, Progress In Electromagnetics Research, Vol. 107, 397-412, (2010).
DOI: 10.2528/pier10071308
Google Scholar
[3]
M. Lin, Megan H. Duane, M. N. Afsar, Cavity-perturbation measurements of complex permittivity and permeability of common ferrimagnetics in microwave-frequency range, IEEE Trans. Magn., vol. 42, no. 10, p.2885–2887, Oct. (2006).
DOI: 10.1109/tmag.2006.879885
Google Scholar
[4]
Levent Erdogan, Cevdet Akyel, Dielectric properties of oil sands at 2. 45GHz with TE1, 0, 11 mode determined by a rectangular cavity resonator, , Journal of Microwave Power and Electromagnetic Energy, 45(1), 2011, pp.15-23.
DOI: 10.1080/08327823.2011.11689794
Google Scholar
[5]
D. C. Dube, M. T. Lanagan, J. H. Kim, and S. J. Jang, Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique, J. Appl. Phys., vol. 63, no. 7, p.2466–2468, Apr. (1988).
DOI: 10.1063/1.341024
Google Scholar
[6]
J. A. Verma and D.C. Dube, Measurement of dielectric parameters of small samples at x-band frequencies by cavity perturbation technique, IEEE Trans. Instrum. Meas., vol. IM-54, no. 5 pp.2120-2123, Oct. (2005).
DOI: 10.1109/tim.2005.854249
Google Scholar
[7]
Wei, H., X. -Q. Yang, K. -M. Huang, et al., Study on the complex permittivity of common organic reagent at 2. 45 GHz, " Chemical Research and Application, Vol. 18, No. 10, 1232-1234, (2006).
Google Scholar