[1]
T.S. Mruthyunjaya, H.R. Balasubramanian, In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains, Mechanism and Machine Theory (1987) Vol. 22, Issue 2, pp.131-139.
DOI: 10.1016/0094-114x(87)90036-x
Google Scholar
[2]
A.G. Ambedkar, V.P. Agrawal, Canonical numbering of kinematic chains and isomorphism problem: min. code, Mechanism and Machine Theory (1987) Vol. 22, Issue 5, pp.453-461.
DOI: 10.1016/0094-114x(87)90062-0
Google Scholar
[3]
A. C Rao, D. Raju Varada, Application of hamming number technique to detect isomorphism among kinematic chains and inversions, Mech. Mach. Theory (1991) Vol. 26, p.55 – 75.
DOI: 10.1016/0094-114x(91)90022-v
Google Scholar
[4]
J. N Yadav, V. P Agrawal, C.R. Pratap, Detection of isomorphism among kinematic chains using the distance concept, ASME Journal of Mechanical Design; December 1995, Vol. 117, pp.607-611.
DOI: 10.1115/1.2826728
Google Scholar
[5]
A.C. Rao, Hamming number technique-2 generation of n planar kinematic chains, Mech. Mach. Theory, (1997) Vol. 32, No. 4, p.489–499.
DOI: 10.1016/s0094-114x(96)00065-1
Google Scholar
[6]
Ali Hasan, R. A. Khan, Isomorphism and inversions of kinematic chains upto ten links, (NaCoMM07), IISc, Bangalore, India, December 12-13, (2007).
Google Scholar
[7]
Ashok Dargar, Ali Hasan, R. A. Khan, A method of identification of kinematic chains and distinct mechanisms, Computer Assisted Mechanics and Engineering Sciences, 16 (2009) 133–141.
Google Scholar
[8]
G. S Bedi, S. Sanyal, Joint Connectivity: A new approach for detection of isomorphism and inversions of planar kinematic chains, J. Institution of Engineers (India), Jan. 2010, Vol. 90, p.23 – 26.
Google Scholar