Applied Mechanics and Materials Vols. 592-594

Paper Title Page

Abstract: The design of structural modeling is usually based on the different geometric function. Since every component has a definite life span, it is necessary to calculate its core parameters. To find the life span of component, the component must be as input parameter to the Finite Element Analysis. The Finite Element Analysis is nothing but a numerical method for solving Engineering and Mathematical problems. The Analysis of the “Rear Axle Casing of Tractor” using cast iron material with special grade “SG 500” for already existing model, taken in the real time is done by using “ANSYS”. The stress, strain, deformation analysis of the component is done by giving various boundary conditions. These analyzed results help to redesign the rear casing of tractor. The redesigning of rear axel casing of tractor is done using “PRO/E”. During redesigning the component, various criteria’s taken in the real field must be taken into an account. The analysis of the redesigned model is done by giving various boundary conditions for both materials ‘SG 500” and “SG 200”. Then the stress, strain, deformation, structural supports, structural results are evaluated and also cores, dies and patterns are generated and hence the redesigned rear axel casing of tractor is found to be in safer mode. And also the better material for the rear axle casing is given, by comparing the above mentioned materials.
1170
Abstract: In this paper, a novel approach for detecting crack location and its intensity in cantilever beam by Fuzzy logic techniques is established. The analysis has been done by using ANSYS FE software. The fuzzy controller with Bell shaped membership functions are used here which consists of three input parameters are relative deviation of first three natural frequencies and two output parameters are relative crack depth and relative crack location respectively. A series of fuzzy rules are resulting from vibration parameters which are finally used for prediction of crack location and its intensity. This method provides the knowledge towards the detection, location and characterization of the damage in the cantilever beam.
1175
Abstract: This paper deals with the preparation of coconut shell powder reinforced polymer matrix composite. The composite is prepared with 20% volume fraction of coconut shell powder and the effect of stirring parameters on the tensile strength of composite is studied.
1180
Abstract: The successful use of Nickel-Titanium (Nitinol) in biomedical applications requires an accurate control of its unique mechanical properties. The purpose of this study is to analyze the effects of a wide range of heat treatments on the mechanical behaviour of Nitinol. We have taken two different grades of Nitinol with different heat treatment history and surface characteristics. The sample with protective oxide coating showed higher elastic strain with comparatively large hysteresis.
1185
Abstract: The present paper, evaluates the effect of surface roughness on the performance characteristics of capillary compensated 3-lobe symmetric hole entry hybrid journal bearing. The effect of surface roughness patterns viz; transverse, isotropic, longitudinal and smooth, on bearing performance is presented for different values of offset factor. A modified form of Reynold’s equation in conjunction with restrictor flow equation is solved by using Galerkin’s technique of FEM. The numerically simulated results of the study indicate that the surface roughness orientation patterns affect the performance of 3-lobe hybrid journal bearing system significantly. Further, it is noticed that the longitudinal roughness pattern provides enhanced value of rotor dynamic coefficient.To have an improved dynamic performance, a judicious selection of offset factor and surface roughness pattern parameter is essential.
1190
Abstract: The developments in the field of composite materials are growing tremendously day by day. One such development is the use of natural fibers as reinforcement in the composite material. This is attributed to the fact that natural fibers are environmental friendly, economical, easily available and non-abrasive. Mixing of natural fiber with Glass Fibers is finding increased applications. In this present investigation Banana – Bamboo – Glass fiber reinforced natural fiber composites is fabricated by Hand – Layup technique with varying fiber orientation such as [0°G, 90°BM, 0°BN, 0°G], [0°G, 0°BM, +45°BN, 0°G] and [0°G, 0°BM, 90°BN, 0°G] and are tested for its tensile strength. The tensile strength of the fabricated composites is evaluated. The results indicated that the natural fiber composite with the fiber orientation of [0°G, 0°BM, 90°BN, 0°G] can withstand more load when compared to the samples with other fiber orientation. Nomenclature Used : BN – Banana fiber BM – Bamboo fiber G – Glass fiber
1195
Abstract: Engineering components are often subjected to cyclic load excursions beyond elastic limit and hence cyclic plastic deformation of engineering materials becomes inevitable. Since the resultant elastic-plastic stress-strain response of the material plays a pivotal role in analysis, design and failure of the component, it becomes important to understand the cyclic plastic deformation behaviour of engineering materials. Also, cyclic hardening parameters are required in the design of structural components subjected to large plastic deformation. Constitutive equations were proposed by Prager, Armstrong and Frederick, Chaboche, and Ohno-Wang based on the stabilized strain-controlled hysteresis curve to evaluate the hardening parameters. In the present study, cyclic hardening parameters for SA 312 Type 304LN stainless steel have been determined based on the results of constant amplitude strain-controlled fatigue tests carried out earlier at CSIR-SERC under five different strain amplitude values, viz, 0.20%, 0.35%, 0.65%, 0.80% and 0.95%. It is observed that in isotropic hardening, the values of Q decreased with increase in strain amplitude. In kinematic hardening, the values of C1 and γ1 are constant for all values of strain amplitude.
1200
Abstract: Under the influence of stresses and strains damage is progressively accumulated in the material leading to full damage viz. fracture corresponding to a critical damage parameter. The damage parameter varies in between zero and unity inclusive of both the values corresponding to non damaged and fully damaged condition. Also damage is a tensorial quantity with physical meaning. In order to represent this physical quantity, a damage-D plane is suggested. This is like a co-ordinate system to easy representation of damage as a function of fracture strain. The damage-D plane can be merged with engineering stress-strain curve beyond the UTS where the damage leads to fracture occurs in the material.
1205
Abstract: Amphibious design of combat vehicle has become a challenging task in the context of increase in Gross Vehicle weight (GVW) of present generation combat vehicles due to demand for high protection levels and higher capacity engine and transmission, incorporation of multiple weapon systems, increased ammunition storage and larger addition of electrical and electronic items. Development of combat vehicles is complex and very expensive, and normally limited with less number of prototypes. The scale modeling and CFD analysis offers a viable solution to accomplish the amphibian design of a combat vehicle with adequate confidence before manufacturing the actual prototype. In the present work, an approach involving experimental towing test using scaled model and CFD simulation has been used to carry out the amphibious design of an 8X8, wheeled, combat vehicle with GVW of 22 ton. In this work, a 1/5th scaled model of the vehicle was manufactured and tested in the towing tank at different test speeds for drag and stability analysis. CFD analysis was carried out on the full scale model to gain adequate details about the dynamics of vehicle in the water in addition to drag estimation. Good correlation has been found in drag values and the flow patterns obtained from towing tank tests and CFD simulations.
1210
Abstract: Saddles are used to support the horizontal pressure vessels such as boiler drums or tanks. Since saddle is an integral part of the vessel, it should be designed in such a way that it can withstand the pressure vessel load while carrying liquid along with the operating weight. This paper presents the stress analysis of saddle support of a horizontal pressure vessel. A model of horizontal pressure vessel and saddle is created in Ansys software. For the given boundry and loading conditions, stresses induced in the saddle support are analyzed using Ansys software. After analysis it is found that maximum localized stress arises at the saddle to vessel interface near the saddle horn area. The results obtained shows that the saddle support design is safe for the given loading conditions and provides the theoretical basis for furthur optimisation.
1220

Showing 221 to 230 of 502 Paper Titles