Monte Carlo Simulation of the Dispersion of Carbon Nanotubes in Cement Matrix

Article Preview

Abstract:

In this paper, the dispersion of carbon nanotubes (CNTs) in cement matrix was analyzed by Three-dimensional Monte Carlo Simulation. A Hard core model was employed which was not allow the intersection among CNTs in a simulated three-dimensional representative volume element (3-D RVE). The position and the orientation of CNTs were assumed to follow the uniformly random distribution. The results showed that CNTs were dispersed randomly and it was helpful for the further simulation calculation about mechanical, conductivity and piezoresistivity properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima. Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] Z. Liu, S. Tabakman, K. Welsher, et al. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano Res., 2 (2009) 85-120.

DOI: 10.1007/s12274-009-9009-8

Google Scholar

[3] W. Yang, P. Thordarson, J.J. Gooding, et al. Carbon nanotubes for biological and biomedical applications, Nanotechnology, 41 (2007) 412001-1-8.

DOI: 10.1088/0957-4484/18/41/412001

Google Scholar

[4] A.A. Kuznetzov, S.B. Lee, M. Zhang, et al. Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays, Carbon, 48 (2010) 41-46.

DOI: 10.1016/j.carbon.2009.08.009

Google Scholar

[5] I. Lahiri, R. Seelaboyina, J.Y. Hwang, et al. Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate, Carbon, 48, (2010) 1531-1538.

DOI: 10.1016/j.carbon.2009.11.064

Google Scholar

[6] M. Kaempgen, C.K. Chan, J. Ma, et al. Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 9, (2009) 1872-1876.

DOI: 10.1021/nl8038579

Google Scholar

[7] J. Yan, J. Liu, Z. Fan, et al. High-performance supercapacitor electrodes based on highly corrugated grapheme sheets, Carbon, 50 (2012) 2179-2188.

DOI: 10.1016/j.carbon.2012.01.028

Google Scholar

[8] H. Jin, D.A. Heller, M. Kalbacova, et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes, Nature Nanotechnology, 5, (2010) 302-309.

DOI: 10.1038/nnano.2010.24

Google Scholar

[9] D.R. Kauffman, D.C. Sorescu, D.P. Schofield, et al. Understanding the sensor response of metal-decorated carbon nanotubes, Nano lett., 10, (2010) 958-963.

DOI: 10.1021/nl903888c

Google Scholar

[10] M. Mazaheri, D. Mari, Z.R. Hesabi, et al. Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol., 71, (2011) 939-945.

DOI: 10.1016/j.compscitech.2011.01.017

Google Scholar

[11] M.K. Yeh, N.H. Tai and J.H. Liu. Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, 44 (2006) 1-9.

DOI: 10.1016/j.carbon.2005.07.005

Google Scholar

[12] B.M. Wang, Y. Han and S. Liu. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites, Constr. Build. Mater., 46 (2013) 8-12.

DOI: 10.1016/j.conbuildmat.2013.04.014

Google Scholar

[13] G.Y. Li, P.M. Wang and X. Zhao. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43 (2005) 1239-1245.

DOI: 10.1016/j.carbon.2004.12.017

Google Scholar

[14] S. Musso, J.M. Tulliani, G. Ferro, et al. Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Compos Sci Technol, 69 (2009) 1985-(1990).

DOI: 10.1016/j.compscitech.2009.05.002

Google Scholar

[15] B. Wang, Y. Han and T. Zhang. Morphological properties of surface-treated carbon nanotubes in cement-based composites, J. Nanosci. Nanotech., 12 (2012) 8415-8419.

DOI: 10.1166/jnn.2012.6635

Google Scholar

[16] M Grujicic, G Cao and R Singh. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials, J. Mater. Sci., 39 (2004) 4441-4449.

DOI: 10.1023/b:jmsc.0000034136.11779.96

Google Scholar

[17] C. Li, E.T. Thostenson, T.W. Chou. Sensors and actuators based on carbon nanotubes and their composites: A review, Compos., Sci., Technol., 68 (2008) 1227-1249.

DOI: 10.1016/j.compscitech.2008.01.006

Google Scholar

[18] Y. Yu, G. Song and L. Sun. Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes, J. Appl. Phys., 108 (2010) 084319-1-5.

DOI: 10.1063/1.3499628

Google Scholar

[19] Y. Yu, S. Song, Z. Bu, et al. Influence of filler waviness and aspect ratio on the percolation threshold of carbon nanomaterials reinforced polymer nanocomposites, J. Mater. Sci., 48 (2013) 5727-5732.

DOI: 10.1007/s10853-013-7364-z

Google Scholar

[20] F. Dalmas, R. Dendievel, L. Chazeau, et al. Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Mater., 54 (2006) 2923-2931.

DOI: 10.1016/j.actamat.2006.02.028

Google Scholar

[21] J. P. Vassal, L. Orgeas, and D. Favier. Modelling microstructure effects on the conduction in fibrous materials with fibre-fibre interface barriers, Modell. Simul, Mater. Sci. Eng., 3 (2008) 035007-1-19.

DOI: 10.1088/0965-0393/16/3/035007

Google Scholar

[22] M. Foygel, R. D. Morris, D. Anez, et al. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity, Phys. Rev. B., 71 (2005) 104201-1-8.

DOI: 10.1103/physrevb.71.104201

Google Scholar