Doped TiO2 Nanotube for Lithium Ion Battery

Article Preview

Abstract:

Doped TiO2 nanotubes for lithium ion batteries have attracted extensive attentions over the recent years, owing to their better electrochemical performances than bare TiO2 nanotubes. The forms of doping are various, depending on different dopants and preparation methods. In this paper, the preparation methods of doped TiO2 nanotubes, the forms of doping and the impacts on electrochemical performances for LIBs are reviewed. Meanwhile, the mechanism of doping is described briefly. The new directions of research on this field are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-56

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.G. Lee, S.C. Nam, J. Choi: Current Applied Physics 12 (2012) 1580-1585.

Google Scholar

[2] B. Cao, J.W. Xu, L.H. Ding, W.F. Zhang: ELECTROCHEM ISTRY Vol. 12No. 4 Nov. (2006).

Google Scholar

[3] W.H. Ryu, D.H. Nam, Y.S. Ko, R.H. Kim, H.S. Kwon: Electrochimica. Acta. 61. (2012) 19–24.

Google Scholar

[4] B.L. He, B. Dong, H.L. Li: Electrochemistry Communications 9 (2007) 425–430.

Google Scholar

[5] D. Fang, K.L. Huang, Sh.Q. Liu, Zh.J. Li: Journal of Alloys and Compounds 464 (2008) L5–L9.

Google Scholar

[6] D. Sh. Guan, Y. Wang: Ionics (2013) 19: 879–885.

Google Scholar

[7] M.M. Rahman, J. Zh. Wang, D. Wexler, Y.Y. Zhang, X.J. Li, Sh.L. Chou, H.K. Liu: J Solid State Electrochem. (2010) 14: 571–578.

Google Scholar

[8] N.A. Kyeremateng, V. Hornebecq, P. Knauthb, T. Djeniziana: Electrochimica. Acta. 62 (2012) 192–198.

Google Scholar

[9] N.A. Kyeremateng, F. Vacandio, M.T. Sougrati, H. Martinez, J.C. Jumas, P. Knauth, T. Djenizian: Journal of Power Sources 224 (2013) 269e277.

DOI: 10.1016/j.jpowsour.2012.09.104

Google Scholar

[10] J. Wanga, Y. Zhou, B. Xiong, Y.Y. Zhao, X.J. Huang, Z.P. Shao: Electrochimica. Acta. 88 (2013) 847–857.

Google Scholar

[11] J.W. Xu, Y.F. Wang, Z.H. Li, W.F. Zhang: Journal of Power Sources 175 (2008) 903–908.

Google Scholar

[12] K.Y. Kang, Y.G. Lee, S. Kim, S.R. Seo, J.C. Kim, K.M. Kim: Materials Chemistry and Physics 137 (2012) 169e176.

Google Scholar

[13] S.J. Parka, H. Kimb, Y.J. Kimc, H. Leea: Electrochimica. Acta. 56 (2011) 5355–5362.

Google Scholar

[14] S.J. Parka, Y.J. Kimb, H. Leea: Journal of Power Sources 196 (2011) 5133–5137.

Google Scholar

[15] G.D. Du, Z.P. Guo, P. Zhang, Y. Li, M.B. Chen, D. Wexlerb, H. Liua: J. Mater. Chem., 2010, 20, 5689–5694 | 5689.

Google Scholar

[16] W.J. Li, Zh.W. Fu: Applied Surface Science 256(2010)2447-2452.

Google Scholar

[17] N. A. Kyeremateng, Ch. Lebouin, P. Knauth, T. Djenizian: Electrochimica. Acta. 88 (2013) 814–820.

DOI: 10.1016/j.electacta.2012.09.120

Google Scholar

[18] L.P. An, X.P. Gao, G.R. Li, T.Y. Yan, H.Y. Zhu, P.W. Shen: Electrochimica. Acta. 53 (2008) 4573–4579.

Google Scholar

[19] K.S. Rajaa, M. Misrab: ECS Trans. 2011 volume 33, issue 29, 31-44.

Google Scholar

[20] L. Yu, Zh.Y. Wang, L. Zhang, H.B. Wu, X. Wen, D. Lou: J. Mater. Chem. A., 2013, 1, 122-127.

Google Scholar

[21] K.M. Kim , K.Y. Kang, S. Kim, Y.G. Lee: Current Applied Physics 12 (2012) 1199e1206H. Han.

Google Scholar

[22] H. Han, T. Song, E.K. Lee, A. Devadoss, Y. Jeon, J. Ha,Y.C. Chung, Y.M. Choi Y.G. Jung, U. Paik: ACS Nano, 2012, 6 (9), p.8308–8315.

DOI: 10.1021/nn303002u

Google Scholar