Thermal Tuning of Vibration Band Gaps in Thin Phononic Crystal Plates with Nitinol

Article Preview

Abstract:

Vibration band structures of thin phononic crystal plates (PCPs) with square array and graphite array of nitinol inserts are calculated by the plane wave expansion (PWE) method. The influences of filling fraction are considered when investigating the effects of the varying temperature on the band gaps. Vibration band gaps of these PCPs can be tuned by changing temperature. This study will be useful in designing PCPs with tunable gaps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-83

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Feng, X.P. Liu, M.H. Lu, et al., Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal, Phys. Rev. B 73(2006) 193101.

DOI: 10.1103/physrevb.73.193101

Google Scholar

[2] F. Liu, F. Cai, Y. Ding and Z. Liu, Tunable transmission spectra of acoustic waves through double phononic crystal slabs, Appl. Phys. Lett. 92(2008) 103504.

DOI: 10.1063/1.2896146

Google Scholar

[3] F. Li, D. Ngo, J. Yang and C. Daraio, Tunable phononic crystals based on cylindrical Hertzian contact, Appl. Phys. Lett. 101(2012) 171903.

DOI: 10.1063/1.4762832

Google Scholar

[4] J.H. Jang, C.K. Ullal, T. Gorishnyy, et al., Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography, Nano Lett. 6(2006) 740-743.

DOI: 10.1021/nl052577q

Google Scholar

[5] F. Casadei, M. Ruzzene, L. Dozio and K.A. Cunefare, Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates, Smart Mater. Struct. 19(2010) 015002.

DOI: 10.1088/0964-1726/19/1/015002

Google Scholar

[6] J.Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material, Physica B: Condensed Matter 400(2007) 137-144.

DOI: 10.1016/j.physb.2007.06.030

Google Scholar

[7] O.B. Matar, J.F. Robillard, J.O. Vasseur, et al., Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys. 111(2012) 054901.

DOI: 10.1063/1.3687928

Google Scholar

[8] Z. Xu, F. Wu and Z. Guo, Shear-wave band gaps tuned in two-dimensional phononic crystals with magnetorheological material, Solid State Communications 154(2013) 43-45.

DOI: 10.1016/j.ssc.2012.10.040

Google Scholar

[9] K.L. Jim, C.W. Leung, S.T. Lau, S.H. Choy and H.L. W Chan, Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal, Appl. Phys. Lett. 94(2009) 193501.

DOI: 10.1063/1.3136752

Google Scholar

[10] J.Y. Yeh, L.W. Chen, Wave propagations of a periodic sandwich beam by FEM and the transfer matrix method, Composite structures 73(2006) 53-60.

DOI: 10.1016/j.compstruct.2005.01.026

Google Scholar

[11] M. Ruzzene, A.M. Baz, Attenuation and localization of wave propagation in periodic rods using shape memory inserts, SPIE's 7th Annual Int. Symp. on Smart Structures and Materials 2000: 389-407.

DOI: 10.1088/0964-1726/9/6/310

Google Scholar

[12] K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res Mechanica 18(1986) 251-263.

Google Scholar

[13] D. Yu, Y. Liu, G. Wang, J. Wen and J. Qiu, Vibration property of two dimensional phononic crystal thin plate, Chinese Journal of Mechanical Engineering 42(2006) 150-154.

DOI: 10.3901/jme.2006.02.150

Google Scholar