Continuously Large-Scale Preparation of Multi-Layer Graphene Grown on Polycrystalline SiC Microspheres

Article Preview

Abstract:

Gram scale multi-layer graphene grown on polycrystalline SiC microspheres were prepared by continuously preparation method in argon through chemical vapor deposition process using liquid polysilacarbosilane as raw material. The observation of products obtained at different temperature confirmed the growth is temperature dependent process. The method could be developed to synthesis hybrid nanostructures based on multi-layer graphene grown on polycrystalline SiC microspheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-102

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] Y Pan, H Zhang, D Shi, J Sun, S Du, F Liu, H Gao. Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001), Adv. Mater. 20 (2008) 1-4.

DOI: 10.1002/adma.200800761

Google Scholar

[3] A Nageshima, K Nuka, H Itoh, T Ichinokawa, C Oshima, S Otani. Electronic states of monolayer graphite formed on TiC(111) surface, Surf. Sci. 291 (1993) 93-98.

DOI: 10.1016/0039-6028(93)91480-d

Google Scholar

[4] T A Land, T Michely, R J Behm, J C Hemminger, G Comsa. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition, Surf. Sci. 264 (1992) 261-270.

DOI: 10.1016/0039-6028(92)90183-7

Google Scholar

[5] C Berger, Z Song, T Li, X Li, A Y Ogbazghi, R Feng, Z Dai, A N Marchenkov, E H Conrad, P N First, W A de Heer. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem. B. 108 (2004).

DOI: 10.1021/jp040650f

Google Scholar

[6] W A de Heer, C Berger, X Wu, P N First, E H Conrad, X Li, T Li, M Sprinkle, J Hass, M L Sadowski, M Potemski, G Martinez. Epitaxial graphene, Solid State Commun. 143 (2007) 92-100.

DOI: 10.1016/j.ssc.2007.04.023

Google Scholar

[7] D Deng, X Pan, H Zhang, Q Fu, D Tan, X Bao. Freestanding Graphene by Thermal Splitting of Silicon Carbide Granules, Adv. Mater. 22 (2010) 2168-2171.

DOI: 10.1002/adma.200903519

Google Scholar

[8] S Stankovich, D A Dikin, G H B Dommett, K M Kohlhaas, E J Zimney, E A Stach, R D Piner, S T Nguyen, R S Ruoff. Graphene-based composite materials, Nature. 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[9] Y M Lin, C Dimitrakopoulos, K A Jenkins, D B Farmer, H Y Chiu, A Grill, P Avouris. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science. 327 (2010) 662.

DOI: 10.1126/science.1184289

Google Scholar

[10] K S Kim, Y Zhao, H Jang, S Y Lee, J M Kim, K S Kim, J Ahn, P Kim, J Choi, B H Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature. (2009).

DOI: 10.1038/nature07719

Google Scholar

[11] T S Sreeprasad, A A Rodriguez, J Colston, A Graham, E Shishkin, V Pallem, V Berry. Electron-Tunneling Modulation in Percolating Network of Graphene quantum Dots: Fabrication, Phenomenological Understanding, and Humidity/Pressure Sensing Applications, Nano Lett. 13 (2013).

DOI: 10.1021/nl4003443

Google Scholar

[12] F Schedin, A K Geim, S V Morozov, E W Hill, P Blake, M I Katsnelson, K S Novoselov. Detection of individual gas molecules adsorbed on graphene, Nat. Commun. 6 (2007) 652-655.

DOI: 10.1038/nmat1967

Google Scholar