[1]
A. Rogalski. Semiconductor detectors and focal plane arrays for far-infrared imaging[J]. Opto-Electronics Review, 2013, 21(4): 406-426.
DOI: 10.2478/s11772-013-0110-x
Google Scholar
[2]
Li Ming, Zhou Zhen-hua, Zhang Gui-lin. Image Measures in the evaluation of ATR algorithm Performance[J]. Infrared and Laser Engineering, 2007, 36(3): 412-416.
Google Scholar
[3]
Xiubao Sui, Qian Chen, and Guohua Guo. A novel non-uniformity evaluation metric of infrared imaging system[J]. Infrared Physics & Technology, 2013, 60: 155-160.
DOI: 10.1016/j.infrared.2013.04.005
Google Scholar
[4]
Schmieder D. E, Weathersby M. R. Detection Performance in Clutter with Variable Resolution[J]. IEEE Trans. Aerospace Electron. Sys. AES, 1983, 19(4): 622-630.
DOI: 10.1109/taes.1983.309351
Google Scholar
[5]
Wu B, Ji H-B, and Li P. New Method for Moving Dim Target Detection Based on Third-Order Cumulant in Infrared Image[J]. Journal of Infrared and Millimeter Waves, 2006, 25(5): 364-367.
Google Scholar
[6]
Clark L. G, Velten V. J. Image Characterization for Automatic Target Recognition Algorithm Evaluations[J]. Optical engineering, 1991, 30(2): 147-153.
DOI: 10.1117/12.55784
Google Scholar
[7]
sadjadi F. A., and Bazakos M. E. Perspective on Automatic Target Recognition Evaluation Technology[J]. Optical engineering, 1991, 30(2): 183-188.
Google Scholar
[8]
Sadjadi F. Measures of Effectiveness and Their Use in Comparative Image Fusion Analysis[C]. IEEE Conf. Geosci Remote Sens. 2003: 3659-3661.
Google Scholar
[9]
Ralph S. K, Irvine J. and M, Snorrason M. An Image Metric-Based ATR Performance Prediction[C]. International conference on artificial intelligence and pattern recognition 2005: 192-197.
DOI: 10.1109/aipr.2006.13
Google Scholar
[10]
Chang H, and Zhang J. New Metrics for Clutter Affecting Human Target Acquisition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 361-368.
DOI: 10.1109/taes.2006.1603429
Google Scholar