A Study on Contact Angle and Surface Tension on Copper-ABS for FDM Feedstock

Article Preview

Abstract:

This paper presents the development of a new Copper-ABS feedstock material by the injection molding machine. The material consists of copper powder filled in an acrylonitrile butadiene styrene (ABS) binder and surfactant material. In this study, the effect of metal filled ABS and binder content on the contact angle and surface tension was investigated experimentally. The detailed formulations of compounding ratio with various combinations of a new Copper-ABS feedstock was done by volume percentage (vol. %). Based on the result obtained, an increment by vol. % of copper filler in ABS effected on contact angle and surface tension results. With highly filled copper content in ABS composites increase the surface tension value. It can be observed that, the tendency of the liquid surface that allow to resist an external force in PMC material through an injection molding process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

747-751

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. H. Lee, J. Abdullah, and Z. A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. of Materials Processing Technology, 169, 2005, 54-61.

DOI: 10.1016/j.jmatprotec.2005.02.259

Google Scholar

[2] M. Nidzad, S. H. Masood, I. Sbarski and A. Groth, A study of Melt Flow analysis of an ABS-Iron composite in Fused Deposition Modeling Process, Tsinghua Science and Technology, 14(1), 2009, 29-37.

DOI: 10.1016/s1007-0214(09)70063-x

Google Scholar

[3] M. Nidzad, S. H. Masood, I. Sbarski, Thermo Mechanical Properties of a highly filled Polymeric Composites for Fused Deposition Modeling, J. of Materials and Design, 32, 2011, 3448-3456.

DOI: 10.1016/j.matdes.2011.01.056

Google Scholar

[4] J. Tyberg and J. H. Bohn, FDM Systems and local adaptive slicing, J. of Materials and Design, 20, 1999, 77-82.

DOI: 10.1016/s0261-3069(99)00012-6

Google Scholar

[5] A. K. Sood, R. K. Ohdar and S. S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling Processed part using grey Taguchi Method, J. of Materials and Design, 30, 2009, 4243–4252.

DOI: 10.1016/j.matdes.2009.04.030

Google Scholar

[6] S. H. Masood, Intelligent Rapid Prototyping with Fused Deposition Modelling, Rapid Prototyping Journal, 2(1), 1996, 24–33.

DOI: 10.1108/13552549610109054

Google Scholar

[7] A. Bellini and S. G. M. Bertoldi, Liquefier Dynamics in Fused Deposition, J. of Manufacturing Science and Engineering, 126, 2004, 237-246.

DOI: 10.1115/1.1688377

Google Scholar

[8] C. Bellehum, L. Li, Q. Sun and P. Gu, Modeling of bond formation between Polymer Filaments in the Fused Deposition Modeling Process, J. of Manufacturing Process, 6(2), 2004, 170-178.

DOI: 10.1016/s1526-6125(04)70071-7

Google Scholar

[9] S. H. Masood and W. Q. Song, Development of new metal/polymer materials for Rapid Tooling using Fused Deposition Modeling, J. of Materials and Design, 25, 2004, 587-594.

DOI: 10.1016/j.matdes.2004.02.009

Google Scholar

[10] S. H. Masood and W. Q. Song, Thermal Charecteristics of a new metal/polymer material for FDM Rapid Prototyping Process, Research articles: Assembly Automation 25/4, 2005, 309-315, Emerald Group Publishing Limited.

DOI: 10.1108/01445150510626451

Google Scholar

[11] C. Karatas, A. Kocer, H. I. Unal, S. Saritas, Rheological Properties of Feedstocks prepared with steatite powder and polyethylene based thermoplastic binders, J. of Materials Process. Technol., 152, pp.77-83, (2004).

DOI: 10.1016/j.jmatprotec.2004.03.009

Google Scholar

[12] N. Sa'ude, M. Ibrahim and M. H. I. Ibrahim, Mechanical Properties of Highly Filled Iron-ABS Composites in Injection Molding for FDM wire Filament, Materials Science Forum Vols. 773-774 (2014) pp.456-461.

DOI: 10.4028/www.scientific.net/msf.773-774.448

Google Scholar

[13] Sa'ude, N., Masood, S. H., Nikzad, M., Ibrahim, M., Ibrahim, M. H. I, Dynamic Mechanical Properties of Copper-ABS Composites for FDM Feedstock, International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 3, (2013).

Google Scholar

[14] M. Zenkiewicz, Method for the calculation of surface free energy of solid, J. of Achievements in Materials and Manufacturing Engineering, 2007; 24(1), 137-145.

Google Scholar

[15] C. F. Soon, W. I. W. Omar, N. Nayan, H. Basri, M. Narawi, K. S. Tee, A Bespoke Contact Angle Measurement Software and Experimental Setup for Determination of Surface Tension, Procedia Technology 8C (2013) 474-481.

DOI: 10.1016/j.protcy.2013.12.219

Google Scholar

[16] H. W. Fox and W. A. Zisman, J. Colloid. Science 1950; 5: 514.

Google Scholar

[17] T. Thomson, Designed application of hydrophilic polyurethanes, United States: CRC Press; (2000).

Google Scholar

[18] Jose Bico, Uwe Thiele, David Quere, Wetting of textured surfaces, J. of Colloids and Surfaces, vol. 206, 2002, pp.41-46.

DOI: 10.1016/s0927-7757(02)00061-4

Google Scholar