Operating Characteristics of Antagonistic Actuator with Pneumatic Artificial Muscles

Article Preview

Abstract:

Nonconventional actuators based on the pneumatic artificial muscles can be used in manipulators mainly for their lower energy consumption and higher performance at lower weight. In the paper there are compared the dynamic operating characteristics of the antagonistic actuator with the pneumatic artificial muscles obtained by simulation of the different muscle models in Matlab / Simulink environment with the real measured data on the experimental actuator. The results of these simulations and measurements confirmed highly nonlinear operating characteristics of such actuator and also right approach to the design of the actuator model using different muscle models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-109

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Balara and A. Vagaská, The torque moment of rotary actuator with artificial muscles, Proceedings of Automation in Theory and Practice (ARTEP 2013), Košice: TU, 2013, p.31/1-10.

Google Scholar

[2] A. Vagaská and M. Balara, The stiffness and torque moment of rotary actuator with artificial muscles, Strojárstvo EXTRA 17/ 6 (2013) 86-87.

Google Scholar

[3] I. Vojtko, M. Kočiško, M. Janák and V. Fečová, The new design of robot arm, Proceedings of the IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), Herl'any, Košice: IEEE, 2013, pp.53-56.

DOI: 10.1109/sami.2013.6480943

Google Scholar

[4] K. Židek and J. Šeminský, Automated rehabilitation device based on artificial muscles, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1113-1114.

DOI: 10.2507/22nd.daaam.proceedings.542

Google Scholar

[5] K. Židek, O. Líška and V. Maxim, Rehabilitation device based on unconventional actuator, Mechatronics: Recent Technological and Scientific Advances, Berlin: Springer, 2011, pp.697-702.

DOI: 10.1007/978-3-642-23244-2_84

Google Scholar

[6] K. Židek, J. Piteľ, A Galajdová and M. Fodor, Rehabilitation device construction based on artificial muscle actuators, Proceedings of the Ninth IASTED International Conference: Biomedical Engineering BioMed 2012, Innsbruck: IEEE, 2012, pp.855-861.

DOI: 10.2316/p.2012.766-020

Google Scholar

[7] J. Boržíková and M. Balara, Mathematical model of contraction characteristics of the artificial muscle, Manufacturing Engineering 6/2 (2007) 26-29.

Google Scholar

[8] J. Sárosi, New approximation algorithm for the force of fluidic muscles, Proceedings of 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2012), Timisoara: IEEE, 2012, pp.229-233.

DOI: 10.1109/saci.2012.6250007

Google Scholar

[9] M. Tóthová, J. Piteľ and J. Boržíková, Operating modes of pneumatic artificial muscle actuator, Applied Mechanics and Materials 308 (2013) 39-44.

DOI: 10.4028/www.scientific.net/amm.308.39

Google Scholar

[10] A. Vagaská, Mathematical description and static characteristics of the spring actuator with pneumatic artificial muscle, Applied Mechanics and Materials 460 (2014) 65-72.

DOI: 10.4028/www.scientific.net/amm.460.65

Google Scholar

[11] A. Hošovský and M. Havran, Dynamic modeling of one degree of freedom pneumatic muscle-based actuator for industrial applications, Tehnički Vjesnik 3/19 (2012) 673-681.

Google Scholar

[12] A. Hošovský and K. Židek, Experimental validation of nominal model characteristics for pneumatic muscle actuator, Applied Mechanics and Materials 460 (2014) 1-12.

DOI: 10.4028/www.scientific.net/amm.460.1

Google Scholar

[13] A. Hošovský, J.N. Marcinčin, J. Piteľ, J. Boržíková and K. Židek, Model-based evolution of a fast hybrid fuzzy adaptive controller for a pneumatic muscle actuator, International Journal of Advanced Robotic Systems 9/56 (2012) 1-11.

DOI: 10.5772/50347

Google Scholar

[14] Ch-P. Chou and B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Transaction on Robotics and Automation 12/1 (1996) 90-102.

DOI: 10.1109/70.481753

Google Scholar

[15] B. Tondu and P. Lopez, Modeling and control of McKibben artificial muscle robot actuators, IEEE Control Systems Magazine 20/2 (2000) 15-38.

DOI: 10.1109/37.833638

Google Scholar

[16] T. Kerscher, J. Albiez, J.M. Zollner and R. Dillmann, Evaluation of the dynamic model of fluidic muscles using quick-release, Proceedings of the 2006 IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics BioRob 2006, Pisa, pp.637-642.

DOI: 10.1109/biorob.2006.1639161

Google Scholar

[17] J. Boržíková, J. Piteľ, M. Tóthová and B. Šulc, Dynamic simulation model of PAM based antagonistic actuator, Proceedings of 12th International Carpatian Control Conference (ICCC 2011), Velké Karlovice, Ostrava: IEEE, 2011, pp.32-35.

DOI: 10.1109/carpathiancc.2011.5945809

Google Scholar

[18] J. Piteľ, R. Neydorf and J. Boržíková, Arm position simulation of PAM based actuator, Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Vienna: DAAAM International, 2011, pp.0145-0146.

DOI: 10.2507/22nd.daaam.proceedings.072

Google Scholar

[19] M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials 308 (2013) 63-68.

DOI: 10.4028/www.scientific.net/amm.308.63

Google Scholar

[20] A. Hošovský, Numerical approximation of static characteristic of PAM-based antagonic actuator, Journal of Applied Science in the Thermodynamics and Fluid Mechanics 1/1 (2007) 1-4.

Google Scholar

[21] J. Boržíková, The determination of analytic dependence of static characteristic of PAM-based antagonistic actuator, Acta Mechanica Slovaca 12/1-A (2008) 227-230.

Google Scholar

[22] N. Saga, J. Nagase and T. Saikawa, Pneumatic artificial muscles based on biomechanical characteristics of human muscles. Applied Bionics and Biomechanics 3/3 (2011) 191-197.

DOI: 10.1155/2006/427569

Google Scholar

[23] M. Tóthová and A. Hošovský, Dynamic simulation model of pneumatic actuator with artificial muscle, Proceedings of 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), Herľany, Budapest: IEEE, 2013, pp.47-51.

DOI: 10.1109/sami.2013.6480994

Google Scholar

[24] J. Piteľ and M. Tóthová, Dynamic modeling of PAM based actuator using modified Hill´s muscle model, Proceedings of 14th International Carpathian Control Conference (ICCC 2013), Rytro, Kraków: IEEE, 2013, pp.307-310.

DOI: 10.1109/carpathiancc.2013.6560559

Google Scholar

[25] M. Tóthová and J. Piteľ, Dynamic model of pneumatic actuator based on advanced geometric muscle model, Proceedings of 9th International Conference on Computational Cybernetics (ICCC 2013), Tihany, Budapest: IEEE, 2013, pp.83-87.

DOI: 10.1109/icccyb.2013.6617566

Google Scholar

[26] M. Tóthová and J. Piteľ, Simulation of actuator dynamics based on geometric model of pneumatic artificial muscle, Proceedings of 11th International Symposium on Intelligent Systems and Informatics (SISY 2013), Subotica: IEEE, 2013, pp.233-237.

DOI: 10.1109/sisy.2013.6662577

Google Scholar

[27] M. Tóthová, J. Piteľ and J. Mižáková, Electro-pneumatic robot actuator with artificial muscles and state feedback, Applied Mechanics and Materials 460 (2014) 23-31.

DOI: 10.4028/www.scientific.net/amm.460.23

Google Scholar

[28] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States 4, Lüdenscheid, RAM-Verlag (2011) pp.5-8.

Google Scholar

[29] T. Krenický, Contribution of PXI technology for the analysis of dynamic characteristics of mechatronic devices, Proceedings of Automation in Theory and Practice (ARTEP 2013), Košice: TU, 2013, p.49/1-5.

Google Scholar