[1]
M. Balara and A. Vagaská, The torque moment of rotary actuator with artificial muscles, Proceedings of Automation in Theory and Practice (ARTEP 2013), Košice: TU, 2013, p.31/1-10.
Google Scholar
[2]
A. Vagaská and M. Balara, The stiffness and torque moment of rotary actuator with artificial muscles, Strojárstvo EXTRA 17/ 6 (2013) 86-87.
Google Scholar
[3]
I. Vojtko, M. Kočiško, M. Janák and V. Fečová, The new design of robot arm, Proceedings of the IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), Herl'any, Košice: IEEE, 2013, pp.53-56.
DOI: 10.1109/sami.2013.6480943
Google Scholar
[4]
K. Židek and J. Šeminský, Automated rehabilitation device based on artificial muscles, Annals of DAAAM for 2011, Vienna: DAAAM International, 2011, pp.1113-1114.
DOI: 10.2507/22nd.daaam.proceedings.542
Google Scholar
[5]
K. Židek, O. Líška and V. Maxim, Rehabilitation device based on unconventional actuator, Mechatronics: Recent Technological and Scientific Advances, Berlin: Springer, 2011, pp.697-702.
DOI: 10.1007/978-3-642-23244-2_84
Google Scholar
[6]
K. Židek, J. Piteľ, A Galajdová and M. Fodor, Rehabilitation device construction based on artificial muscle actuators, Proceedings of the Ninth IASTED International Conference: Biomedical Engineering BioMed 2012, Innsbruck: IEEE, 2012, pp.855-861.
DOI: 10.2316/p.2012.766-020
Google Scholar
[7]
J. Boržíková and M. Balara, Mathematical model of contraction characteristics of the artificial muscle, Manufacturing Engineering 6/2 (2007) 26-29.
Google Scholar
[8]
J. Sárosi, New approximation algorithm for the force of fluidic muscles, Proceedings of 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2012), Timisoara: IEEE, 2012, pp.229-233.
DOI: 10.1109/saci.2012.6250007
Google Scholar
[9]
M. Tóthová, J. Piteľ and J. Boržíková, Operating modes of pneumatic artificial muscle actuator, Applied Mechanics and Materials 308 (2013) 39-44.
DOI: 10.4028/www.scientific.net/amm.308.39
Google Scholar
[10]
A. Vagaská, Mathematical description and static characteristics of the spring actuator with pneumatic artificial muscle, Applied Mechanics and Materials 460 (2014) 65-72.
DOI: 10.4028/www.scientific.net/amm.460.65
Google Scholar
[11]
A. Hošovský and M. Havran, Dynamic modeling of one degree of freedom pneumatic muscle-based actuator for industrial applications, Tehnički Vjesnik 3/19 (2012) 673-681.
Google Scholar
[12]
A. Hošovský and K. Židek, Experimental validation of nominal model characteristics for pneumatic muscle actuator, Applied Mechanics and Materials 460 (2014) 1-12.
DOI: 10.4028/www.scientific.net/amm.460.1
Google Scholar
[13]
A. Hošovský, J.N. Marcinčin, J. Piteľ, J. Boržíková and K. Židek, Model-based evolution of a fast hybrid fuzzy adaptive controller for a pneumatic muscle actuator, International Journal of Advanced Robotic Systems 9/56 (2012) 1-11.
DOI: 10.5772/50347
Google Scholar
[14]
Ch-P. Chou and B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles, IEEE Transaction on Robotics and Automation 12/1 (1996) 90-102.
DOI: 10.1109/70.481753
Google Scholar
[15]
B. Tondu and P. Lopez, Modeling and control of McKibben artificial muscle robot actuators, IEEE Control Systems Magazine 20/2 (2000) 15-38.
DOI: 10.1109/37.833638
Google Scholar
[16]
T. Kerscher, J. Albiez, J.M. Zollner and R. Dillmann, Evaluation of the dynamic model of fluidic muscles using quick-release, Proceedings of the 2006 IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics BioRob 2006, Pisa, pp.637-642.
DOI: 10.1109/biorob.2006.1639161
Google Scholar
[17]
J. Boržíková, J. Piteľ, M. Tóthová and B. Šulc, Dynamic simulation model of PAM based antagonistic actuator, Proceedings of 12th International Carpatian Control Conference (ICCC 2011), Velké Karlovice, Ostrava: IEEE, 2011, pp.32-35.
DOI: 10.1109/carpathiancc.2011.5945809
Google Scholar
[18]
J. Piteľ, R. Neydorf and J. Boržíková, Arm position simulation of PAM based actuator, Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, Vienna: DAAAM International, 2011, pp.0145-0146.
DOI: 10.2507/22nd.daaam.proceedings.072
Google Scholar
[19]
M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials 308 (2013) 63-68.
DOI: 10.4028/www.scientific.net/amm.308.63
Google Scholar
[20]
A. Hošovský, Numerical approximation of static characteristic of PAM-based antagonic actuator, Journal of Applied Science in the Thermodynamics and Fluid Mechanics 1/1 (2007) 1-4.
Google Scholar
[21]
J. Boržíková, The determination of analytic dependence of static characteristic of PAM-based antagonistic actuator, Acta Mechanica Slovaca 12/1-A (2008) 227-230.
Google Scholar
[22]
N. Saga, J. Nagase and T. Saikawa, Pneumatic artificial muscles based on biomechanical characteristics of human muscles. Applied Bionics and Biomechanics 3/3 (2011) 191-197.
DOI: 10.1155/2006/427569
Google Scholar
[23]
M. Tóthová and A. Hošovský, Dynamic simulation model of pneumatic actuator with artificial muscle, Proceedings of 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013), Herľany, Budapest: IEEE, 2013, pp.47-51.
DOI: 10.1109/sami.2013.6480994
Google Scholar
[24]
J. Piteľ and M. Tóthová, Dynamic modeling of PAM based actuator using modified Hill´s muscle model, Proceedings of 14th International Carpathian Control Conference (ICCC 2013), Rytro, Kraków: IEEE, 2013, pp.307-310.
DOI: 10.1109/carpathiancc.2013.6560559
Google Scholar
[25]
M. Tóthová and J. Piteľ, Dynamic model of pneumatic actuator based on advanced geometric muscle model, Proceedings of 9th International Conference on Computational Cybernetics (ICCC 2013), Tihany, Budapest: IEEE, 2013, pp.83-87.
DOI: 10.1109/icccyb.2013.6617566
Google Scholar
[26]
M. Tóthová and J. Piteľ, Simulation of actuator dynamics based on geometric model of pneumatic artificial muscle, Proceedings of 11th International Symposium on Intelligent Systems and Informatics (SISY 2013), Subotica: IEEE, 2013, pp.233-237.
DOI: 10.1109/sisy.2013.6662577
Google Scholar
[27]
M. Tóthová, J. Piteľ and J. Mižáková, Electro-pneumatic robot actuator with artificial muscles and state feedback, Applied Mechanics and Materials 460 (2014) 23-31.
DOI: 10.4028/www.scientific.net/amm.460.23
Google Scholar
[28]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States 4, Lüdenscheid, RAM-Verlag (2011) pp.5-8.
Google Scholar
[29]
T. Krenický, Contribution of PXI technology for the analysis of dynamic characteristics of mechatronic devices, Proceedings of Automation in Theory and Practice (ARTEP 2013), Košice: TU, 2013, p.49/1-5.
Google Scholar