Progressive Technology Diagnostics and Factors Affecting Machinability

Article Preview

Abstract:

The Water as an element with its force is applied to the solid substances and thus violates their. A man started to notice the power of water and gradually it began to exploit to their advantage and developed technology of machining of various materials, which brought a facility generating pressure water jet. [1] Presently cutting materials technology is an essential technology pre-production stages. Article discusses the production system with technology of abrasive water jet and is aimed at assessing the impact of selected factors of the technological process in the dividing of materials using this technology. The main part describes the influence of factors on the depth of cut and surface topography of machined in terms of roughness. At the end of the article are evaluated selected technological factors used in cutting of materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-190

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Krajný, Z.: Water jet in practice (Vodný lúč v praxi). Bratislava: M. Mračko, 1998, p.30. (in Slovak).

Google Scholar

[2] J. Vašek, J. Foldyna, Abrasive Water jet cutting of hard rocks, in: Proc. of 10th Int. Symp. on Jet Cutting Technology. Amsterdam, 31 Oct. –2 Nov, (1990).

Google Scholar

[3] B. Havlík, Quantification of technological parameters for waterjet cutting (Kvantifikácia technologických parametrov pre obrábanie vodným lúčom), KVT SjF STU, Bratislava 1995, p.69. (in Slovak).

Google Scholar

[4] I. Maňková, Progressive Technologies (Progresívne technológie), Košice: SjF TU, 2000, p . 275. (in Slovak).

Google Scholar

[5] M. Prislupčák, Investigation the effect of cutting parameters on the head of vibration technology in the production system with technology AWJ (Skúmanie vplyvu rezných parametrov na vznik vibrácií technologickej hlavice vo výrobnom systéme s technológiou AWJ). Master's thesis. Prešov, 2013, 62 p. (in Slovak).

Google Scholar

[6] Vasilko, K.: Analytical theory of machining process, (Analytická teória trieskového obrábania), FMT Prešov, 2007, 338 p. (in Slovak).

Google Scholar

[7] A. Humár, Technology 1: Machining Technology (Technologie obrábení), TU Brno, 2004. (in Czech).

Google Scholar

[8] A. Mičietová, M. Čilliková, Technology – machining (Technológia – obrábanie), Žilina: EDIS ŽU, 2009, pp.390-391. (in Slovak).

Google Scholar

[9] J. Valíček, S. Hloch, Measurement and control of surface quality created by dividing abrasive jet, (Merení a rízení kvality povrchu vytvorených hydroabrazivním delením), Ostrava: ÁMOS, 2008, p.128. (in Czech).

Google Scholar

[10] Kmec, J.: Impact parameters for water jet surface created Hydroabrasive erosion, (Vplyv parametrov vodného lúča na povrch vytvorený hydroabrazívnou eróziou), Edition scientific and technical literature, 2010, ISBN 978-80-553-0493-9.

Google Scholar

[11] Maňková, I.: Progressive Technologies, (Progresívne technológie). Košice: SjF TU, 2000, p.275. (in Slovak).

Google Scholar

[12] S. Fabian, Š. Salokyová, AWJ cutting: the technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[13] Information on http: /www. sjf. tuke. sk/kmae/TaIPvPP/2010/index. files/ clanky%20PDF/KMEC_SOBOTOVA_BICEJOVA. pdf.

Google Scholar

[14] S. Hloch, J. Valíček, Influence factors on surface topography created Hydroabrasive division (Vplyv faktorov na topografiu povrchov vytvorených hydroabrazívnym delením), Prešov: FMT TUKE, 2008. (in Slovak).

Google Scholar

[15] S. Fabian, Š. Salokyová, P. Jacko, Experimental verification of the freqeuncy spectrum of unwear and wears guidance tube on the technological head vibrations creation in the production system with AWJ technology, Manufacturing Technology 12/13 (2012).

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/2/105

Google Scholar

[16] Information on www. vutbr. cz/www_base/zav_prace_soubor_verejne. php?file_id=26768.

Google Scholar

[17] A. Panda et al., Study of the Surface Material AISI 304 Usable for Actuator after the Process of Turning, Applied Mechanics and Materials 460 (2014) 107-114.

DOI: 10.4028/www.scientific.net/amm.460.107

Google Scholar

[18] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[19] S. Fabian, Š. Salokyová, The technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[20] T. Krenický, M. Rimár, Monitoring of Vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.

DOI: 10.4028/www.scientific.net/kem.496.229

Google Scholar

[21] I. Mrkvica, M. Janoš, P. Sysel, Cutting efficiency by drilling with tools from different materials, Advanced Materials Research 538-541 (2012) 1327-1331.

DOI: 10.4028/www.scientific.net/amr.538-541.1327

Google Scholar

[22] I. Mrkvica, M. Janoš, P. Sysel, Contribution to milling of materials on Ni base, Applied Mechanics and Materials 217-219 (2012) 2056-(2059).

DOI: 10.4028/www.scientific.net/amm.217-219.2056

Google Scholar

[23] A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy, 105/16 (2011) 459-461.

Google Scholar

[24] A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[25] A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.

DOI: 10.4028/www.scientific.net/amr.716.261

Google Scholar

[26] A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.

DOI: 10.4028/www.scientific.net/amr.716.254

Google Scholar

[27] Š. Salokyová, S. Fabian, The influence of abrasive mass flow on vibrations in the water jet cutting process, Výrobné inžinierstvo 10/1 (2011) 31-34.

Google Scholar

[28] T. Krenický, Particularity in diagnosis and attenuation of vibrations in die-casting technology, in: Operation and diagnostics of machines and production systems operational states. Brno: Tribun EU, 2008, pp.119-123.

Google Scholar

[29] I. Leššo, P. Flegner, M. Šujanský, E. Špak, Research of the possibility of application of vector quantisation method for effective process control of rocks disintegration by rotary drilling, Metalurgija 49/1 (2010) 61-65.

Google Scholar

[30] S. Adamczak et al., Statistical validation of the method for measuring radius variations of components on the machine tool, Metrology and Measuring Systems 18/1 (2011) 35-46.

DOI: 10.2478/v10178-011-0004-5

Google Scholar

[31] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, V. Fecova, Possibility of a quick check on milling strategy suitability, Technical Gazette 19/4 (2012) 959-964.

DOI: 10.1063/1.4707641

Google Scholar

[32] I. Orlovsky, M. Hatala, M. Janak, Creation of simulation model of ceramic granulate production in spraying kiln, Technical Gazette 17/4 (2010) 419-423.

Google Scholar

[33] J. Duplák, Identification of comprehensive T-vc dependence, Diploma Thesis, FMT Prešov, 2010, 106 p.

Google Scholar

[34] T. Duraník, J. Ružbarský, M. Stopper, Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.

DOI: 10.4028/www.scientific.net/amr.717.74

Google Scholar

[35] K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.

DOI: 10.4028/www.scientific.net/amm.302.269

Google Scholar

[36] S. Fabian, P. Čačko, Experimental Measurement and Examination of Independent and Combined Interaction of Vibrodiagnostic and Tribotechnical Methods, Applied Mechanics and Materials 308 (2013) 51-56.

DOI: 10.4028/www.scientific.net/amm.308.51

Google Scholar

[37] R. Cep, L. Cepova, M. Hatala, I. Budak, A. Janasek, Ceramic cutting tool tests with interupted cut simulator, in: Proc. of Int. Conf. on Innovative Technologies IN-TECH 2010, Praha 14-16/09/2010. Jaroměř: AS, 2010, pp.144-148.

Google Scholar

[38] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States Vol. 4, Lüdenscheid, RAM-Verlag, 2011, pp.5-8.

Google Scholar

[39] P. Michalik, J. Zajac, Intelligently programming of holes machining, Manufacturing Engineering 9/4 (2010) 63-65.

Google Scholar

[40] R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[41] T. Zaborowski, Ekowytwarzanie. Gorzow, 2007, 100 p.

Google Scholar