Diagnostic and Experimental Valuation on Progressive Machining Unit

Article Preview

Abstract:

The main effort of each technological process is not only to reduce the costs, but also to reduce the impact on the environment. The technology of abrasive water jet is one of the methods of division and cutting materials with the lowest impact on the environment, since water is the cutting tool, in our case with the addition of an abrasive. The aim of the measurement was the observation (examination) and evaluation of the vibration impact on the technological head in the technology of abrasive water jet when changing the selected technological parameters, namely the feed rate of the technological head. The experiments were carried out on one kind of material - steel HARDOX 500 with a thickness of 10 mm. The impact of the change of the technological head’s feed rate (100, 50, mm/min) on the size of the vibration acceleration amplitude and its frequency were examined. A database was created from the measured vibration values on the technological head and from that database the data was evaluated in selected softwares (LabVIEW, SignalExpress a Microsoft Excel). Graphical dependencies, frequency spectra covers and covers comparison graph were created from which new findings and conclusions were formulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-199

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Krajný, Water jet in practice, (Vodný lúč v praxi), Bratislava: Miroslav Mračko, 1998, p.30. (in Slovak).

Google Scholar

[2] K. Vasilko, Analytical theory of machining process, (Analytická teória trieskového obrábania). Prešov, Faculty of Manufacturing Technologies TU Košice, 2007, p.338. (in Slovak).

Google Scholar

[3] A. Humár, Technology I.: Machining Technology (Technologie I.: Technologie obrábení). Brno: Technical University in Brno, 2004. (in Czech).

Google Scholar

[4] A. Mičietová, M. Čilliková, Technology – machining (Technológia – obrábanie). EDIS Publishing ŽU, 2009, pp.390-391. (in Slovak).

Google Scholar

[5] J. Valíček, S. Hloch, Measurement and control of surface quality created by dividing abrasive jet (Měření a řízení kvality povrchu vytvorených hydroabrazivním delením). Ostrava: AMOS, 2008, p.128. (in Czech).

Google Scholar

[6] J. Kmec, Impact of water jet parameters on surfaces created by hydroabrasive erosion (Vplyv parametrov vodného lúča na povrch vytvorený hydroabrazívnou eróziou), Edition of scientific and technical literature, FVT TU Košice, 2010. (in Slovak).

Google Scholar

[7] I. Maňková, Progressive Technologies (Progresívne technológie). Technical University of Kosice, Faculty of Mechanical Engineering, 2000, 275 p.

Google Scholar

[8] Analysis of cutting heads for AWJ machining technology [on-line]. [cit 2012-11-05]. <http: /www. sjf. tuke. sk/transferinovacii/pages/archiv/transfer/22-2012/pdf/075-079. pdf>.

Google Scholar

[9] J. Kmec, L. Sobotova, L. Bicejova, Categories of factors influenced on hydroerosion, in: Proc. 13th Int. Sci. Conf. Trends and Innovative Approaches in Business Processes, TU Košice, (2010).

Google Scholar

[10] S. Hloch, J. Valíček, Influence factors on surface topography created Hydroabrasive division, (Vplyv faktorov na topografiu povrchov vytvorených hydroabrazívnym delením). Faculty of Manufacturing Technologies with a seat in Prešov, TU Košice, 2008. (in Slovak).

Google Scholar

[11] S. Fabian, Š. Salokyová, P. Jacko, Experimental verification of the frequency spectrum of unwear and wears guidance tube on the technological head vibrations creation in the production system with AWJ technology, Manufacturing Technology 12/13 (2012).

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/2/105

Google Scholar

[12] S. Fabian, Š. Salokyová, AWJ cutting: the technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[13] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States 4, Lüdenscheid, RAM-Verlag (2011) pp.5-8.

Google Scholar

[14] A. Panda, et al., S. Fabian, Study of the Surface Material AISI 304 Usable for Actuator after the Process of Turning, Applied Mechanics and Materials 460 (2014) 107-114.

DOI: 10.4028/www.scientific.net/amm.460.107

Google Scholar

[15] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[16] I. Mrkvica, M. Janoš, P. Sysel, Cutting efficiency by drilling with tools from different materials, Advanced Materials Research 538-541 (2012) 1327-1331.

DOI: 10.4028/www.scientific.net/amr.538-541.1327

Google Scholar

[17] I. Mrkvica, M. Janoš, P. Sysel, Contribution to milling of materials on Ni base, Applied Mechanics and Materials 217-219 (2012) 2056-(2059).

DOI: 10.4028/www.scientific.net/amm.217-219.2056

Google Scholar

[18] M. Prislupčák, Investigate the effect of cutting parameters on the head of vibration technology in the production system with technology AWJ (Skúmanie vplyvu rezných parametrov na vznik vibrácií technologickej hlavice vo výrobnom systéme s technológiou AWJ). Thesis, Prešov, 2013, p.62.

Google Scholar

[19] I. Pandová, T. Gondová, K. Dubayová, Natural and modified clinoptilolite testing for reduction of harmful substance in manufacturing exploitation, Advanced Materials Research 518-523 (2012) 1757-1760.

DOI: 10.4028/www.scientific.net/amr.518-523.1757

Google Scholar

[20] T. Duraník, J. Ružbarský, M. Stopper. Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.

DOI: 10.4028/www.scientific.net/amr.717.74

Google Scholar

[21] A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105 (2011) 459-461.

Google Scholar

[22] A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[23] K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.

DOI: 10.4028/www.scientific.net/amm.302.269

Google Scholar

[24] A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.

DOI: 10.4028/www.scientific.net/amr.716.261

Google Scholar

[25] A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.

DOI: 10.4028/www.scientific.net/amr.716.254

Google Scholar

[26] I. Orlovsky, M. Hatala, M. Janak, Creation of simulation model of ceramic granulate production in spraying kiln, Technical Gazette 17/4 (2010) 419-423.

Google Scholar

[27] J. Duplák, T-vc dependence for cutting ceramic in standard ISO 3685, Manufacturing Engineering 9/4 (2010) 58-62.

Google Scholar

[28] J. Duplák, Identification of comprehensive T-vc dependence, Diploma Thesis, Prešov FVT, p.106, (2010).

Google Scholar

[29] S. Fabian, P. Čačko, Experimental Measurement and Examination of Independent and Combined Interaction of Vibrodiagnostic and Tribotechnical Methods, Applied Mechanics and Materials 308 (2013) 51-56.

DOI: 10.4028/www.scientific.net/amm.308.51

Google Scholar

[30] P. Michalik, J. Zajac, Intelligently programming of holes machining, Manufacturing Engineering 9 (2010) 63-65.

Google Scholar

[31] R. Cep, L. Cepova, M. Hatala, I. Budak, A. Janasek, Ceramic cutting tool tests with interrupted cut simulator. Proc. of Inter. Conf. on Innovative Technologies IN-TECH 2010. Praha: 14. -16. 9. 2010. Jaroměř: AS, 2010 pp.144-148.

Google Scholar

[32] T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.

DOI: 10.4028/www.scientific.net/kem.496.229

Google Scholar

[33] E. Ragan, J. Dobránsky, P. Baron, M. Kočiško, J. Svetlík, Dynamic of taking out molding parts at injection molding, Metallurgy 51 (2012) 567-570.

Google Scholar

[34] P. Semančo, M. Fedák, M. Rimár, E. Ragan, Equation model to evaluate fluidity of aluminum alloys under pressure die-casting conditions with an application, Advanced Materials Research 505 (2012) 190-194.

DOI: 10.4028/www.scientific.net/amr.505.190

Google Scholar

[35] R. Kreheľ, L. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[36] M. Zelenak, J. Valicek, S. Hloch, D. Kozak, I. Samardzic, M. Harnicarova, J. Klich, P. Hlavacek, R. Cincio, Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests Metalurgija 51/3 (2012).

Google Scholar

[37] M. Zelenak, J. Valicek, J. Brumek, P. Hlavacek, B. Haluzikova, M. Vylezik, P. Babkova, M. Harnicarova, V. Szarkova, M. Kusnerova, V. Kubena, Measurement and analysis of the hardnees of aluminium surface layers by the nanoindentation and scratch tests, Chemické Listy 105 (2011).

Google Scholar

[38] Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of Capability of Measuring Device on the Basis of Diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.

DOI: 10.4028/www.scientific.net/amm.308.69

Google Scholar

[39] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[40] T. Duranik, J. Ruzbarsky, F. Manlig, Proposal for possibilities of in creating production productivity of thermosets compression moulding with using process simulation software, Applied Mechanics and Materials 308 (2013) 192-194.

DOI: 10.4028/www.scientific.net/amm.308.191

Google Scholar

[41] I. Leššo, P. Flegner, M. Šujanský, E. Špak, Research of the possibility of application of vector quantisation method for effective process control of rocks disintegration by rotary drilling, Metalurgija 49/1 (2010) 61-65.

Google Scholar

[42] S. Adamczak, W. Makiela, K. Janusiewicz, K. Stepien, Statistical validation of the method for measuring radius variations of components on the machine tool, Metrology and Measuring Systems 18 (2011) 35-46.

DOI: 10.2478/v10178-011-0004-5

Google Scholar

[43] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, V. Fecova, Possibility of a quick check on milling strategy suitability, Technical Gazette 19/4 (2012) 959-964.

DOI: 10.1063/1.4707641

Google Scholar

[44] T. Zaborowski, Ekowytwarzanie, IBEN Gorzow Wlkp, p.100, (2007).

Google Scholar