[1]
K. Židek, E. Rigasová, Diagnostics of Products by Vision System, Applied Mechanics and Materials 308 (2013) 33-38.
DOI: 10.4028/www.scientific.net/amm.308.33
Google Scholar
[2]
Mathworks, Matlab, Computer Vision System Toolbox, [online], available at: <http: /www. mathworks. com/products/computer-vision/description5. html>.
Google Scholar
[3]
National Instruments, Machine Vision Software, [online] available at: <http: /www. ni. com/vision/software>.
Google Scholar
[4]
OpenCv Library, [online] available at: <http: /opencv. willowgarage. com/wiki>.
Google Scholar
[5]
EmguCv Library, [online] available at: <http: /www. emgu. com/wiki/index. php/Main_Page>.
Google Scholar
[6]
AForge. Net Library, [online] available at: <http: /www. aforgenet. com/framework>.
Google Scholar
[7]
T. Leung, J. Malik, Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons, International Journal of Computer Vision 43 (2001) 29–44.
Google Scholar
[8]
Q. Zaidi, Visual inferences of material changes: color as clue and distraction, Wiley Interdiscip Rev Cogn Sci., 2011, p.686–700.
DOI: 10.1002/wcs.148
Google Scholar
[9]
C. Liu, L. Sharan, E.H. Adelson, R. Rosenholtz, Exploring Features in a Bayesian Framework for Material Recognition, in: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, (2010).
DOI: 10.1109/cvpr.2010.5540207
Google Scholar
[10]
Lead-based paint: Testing methods. US Department of Agriculture Forest Service, Technology & Development Program, 1996, available at: <www. fs. fed. us/eng/pubs/ htmlpubs/htm96712353/>.
Google Scholar
[11]
J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Analysis and Machine Intelligence 8 (1986) 679-714.
DOI: 10.1109/tpami.1986.4767851
Google Scholar
[12]
R. O. Duda, P. E. Hart, Use of the Hough Transformation to Detect Lines and Curves in Pictures, Comm. ACM 15 (1972) 11–15.
DOI: 10.1145/361237.361242
Google Scholar
[13]
F. Duchoň, K. Marian, L. Jurišica, Reactive Navigation of Mobile Robot with Visual System, Acta Mechanica Slovaca 13/2-A (2009) 47-52.
Google Scholar
[14]
M. Balara, The parametric invariants control system, in: 20th DIDMATTECH, Olomouc: Votobia, 2007, pp.109-114.
Google Scholar
[15]
J. Boržíková, J. Piteľ, M. Tóthová, M., B. Šulc, Dynamic simulation model of PAM based antagonistic actuator, in: Proc. of 12th Int. Carpatian Control Conf. ICCC 2011: 25-28 May 2011, Velké Karlovice, Czech Republic, IEEE, 2011, pp.32-35.
DOI: 10.1109/carpathiancc.2011.5945809
Google Scholar
[16]
A. Hošovský, M. Havran, Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-based Actuator for Industrial Applications, Technical Gazette 19 (2012) 673-681.
Google Scholar
[17]
K. Židek, J. Šeminský, M. Dovica, A. Hošovský, Wireless mobile device with integrated image processing, in: Proc. of 8th Technical Conf. ARaP, Praha, 2012, pp.37-42.
Google Scholar
[18]
J. Svetlík, P. Demeč, Virtual machining and its experimental verification, Acta Mechanica Slovaca 13/4 (2009) 68-73.
DOI: 10.2478/v10147-010-0039-8
Google Scholar