Modelling of the Anisothermal Phase Transformation of Austenite by Electromagnetic Sensor

Article Preview

Abstract:

The characterization of steel microstructures is an important tool for metallurgists as mechanical properties are controlled by microstructural parameters such as grain size, phase balance and precipitates. This paper describes a model of the phase transformation of tool steel CSN 41 9436. Each of the experimental data was observed by electromagnetic sensor. The mathematic model was developed for an optimizing of tool steel heat treatment. The model was developed from one experiment and next experiments were for an evaluation of the model. A model can be satisfactory used for graphical form of the austenite phase transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-51

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Callegaro, G. Galzerano, C. Svelto, Precision Impedance Measurements by the Three-Voltage Method With a Novel High-Stability Multiphase DDS Generator, IEEE Transactions on Instrumentation and Measurement 52 (2003) 1195-1199.

DOI: 10.1109/tim.2003.815990

Google Scholar

[2] M. Carullo, A. Parvis, L. Vallan, L. Callegaro, Automatic Compensation System for Impedance Measurement, IEEE Transactions on Instrumentation and Measurement 52 (2003) 517-521.

DOI: 10.1109/tim.2003.816843

Google Scholar

[3] C. Constantinides, S. Angeli, Elimination of mutual inductance in NMR phased arrays: The paddle design revisited, Journal of Magnetic Resonance 222 (2012) 59-67.

DOI: 10.1016/j.jmr.2012.06.005

Google Scholar

[4] R. K. Dutta, R. M. Huizenga, M. Amirthalingam, M. J. M. Hermans, A. King, I. M. Richardson, Transformation-induced diffraction peak broadening during bainitic and martensitic transformations under small external loads in quenched and tempered high strength steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44/9 (2013).

DOI: 10.1007/s11661-013-1829-1

Google Scholar

[5] M. J. Holzweissig, D. Canadinc, H. J. Maier, In-situ characterization of transformation plasticity during anisothermal austenite-to-bainite phase transformation, Materials Characterization 65 (2012) 100-108.

DOI: 10.1016/j.matchar.2012.01.007

Google Scholar

[6] S. J. Jones, H. K. D. H. Bhadeshia, Kinetics of the simultaneous decomposition of austenite into several transformation products, Acta Materialia 45 (1997) 2911-2920.

DOI: 10.1016/s1359-6454(96)00392-8

Google Scholar

[7] L. Kosec, Š. Šavli, S. Kožuh, T. Holjevac Grgurić, A. Nagode, G. Kosec, G. Dražič, M. Gojić, Transformation of austenite during isothermal annealing at 600-900 C for heat-resistant stainless steel, Journal of Alloys and Compounds 567 (2013) 59-64.

DOI: 10.1016/j.jallcom.2013.03.102

Google Scholar

[8] H. F. Lan, L. X. Du, X. H. Liu, Microstructure and mechanical properties of a low carbon bainitic steel, Steel Research International 84/4 (2013) 352-361.

DOI: 10.1002/srin.201200186

Google Scholar

[9] J. Liu, X. J. Hao, L. Zhou, M. Strangwood, C. L. Davis, A. J. Peyton, Measurement of microstructure changes in 9Cr-1Mo and 2. 25Cr-1Mo steels using an electromagnetic sensor, Scripta Materialia 66 (2012) 367-370.

DOI: 10.1016/j.scriptamat.2011.11.032

Google Scholar

[10] J. Molnár, J. Žarnovský, Multispectral and hyperspectral analysis of illustration processing, in: Quality and reliability of technical systems/Kvalita a spoľahlivosť technických systémov. Nitra: SPU, 2012, pp.233-235.

Google Scholar

[11] K. Musioł, A. Met, T. Skubis, Automatic bridge for comparison of inductance standards, Measurement: Journal of the International Measurement Confederation 43/10 (2010) 1661-1667.

DOI: 10.1016/j.measurement.2010.09.019

Google Scholar

[12] K. Musiol, A digitally controlled switch for maintenance of inductance standards, in: Conference Digest of Conf. on Precision Electromagnetic Measurements CPEM, Torino, 2006, 556–557.

Google Scholar

[13] C. Peters, Y. Manoli, Inductance calculation of planar multi-layer and multi-wire coils: An analytical approach, Sensors and Actuators, A: Physical 145-146 (2008) 394-404.

DOI: 10.1016/j.sna.2007.11.003

Google Scholar

[14] T. Reti, Y. Fried, I. Felde, Computer simulation of steel quenching process using a multi-phase transformation model, Computational Materials Science 22 (2001) 261-278.

DOI: 10.1016/s0927-0256(01)00240-3

Google Scholar

[15] A. V. Zagainov, A. I. Ulyanov, A. A. Chulkina, I. A. Zykina, The effect of Cementite on the formation of the magnetic hysteresis properties of thermally treated carbon steels, Russian Journal of Nondestructive Testing 48(2012) 35-43.

DOI: 10.1134/s1061830912010123

Google Scholar

[16] Scilab Enterprises (2012). Scilab: Free and Open Source software for numerical computation (OS, Version 5. 4. 1) [Software]. Available from: http: /www. scilab. org.

DOI: 10.1109/ossc.2009.5416873

Google Scholar

[17] J. Žitňanský, J. Žarnovský, Effects of material and cutting conditions on the temperature of drilling measured by thermovision technic, Manufacturing engineering 9/2 (2010) 34-37.

Google Scholar

[18] J. Dobránsky, R. Mikuš, J. Ružbarský, Comparison of Cooling Variants by Simulation Software, Advanced Materials Research 801 (2013) 75-80.

DOI: 10.4028/www.scientific.net/amr.801.75

Google Scholar

[19] Š. Gašpár, J. Paško, J. Ružbarský, Die Casting Defects of Castings from Silumin, Applied Mechanics and Materials 510 (2014) 91-96.

DOI: 10.4028/www.scientific.net/amm.510.91

Google Scholar