Mathematical Modelling and Optimization of Technological Process Using Design of Experiments Methodology

Article Preview

Abstract:

The paper deals with statistical methods application to the evaluation of the relationships between the investigation range of input factors and response in longitudinal turning process. Our research was aimed at creation of the model of real situations of cutting conditions effects on the machined surface morphology applying longitudinal turning of steel C45 with specific values. Design of experiments (DoE) have increasingly had a wider application when creation mathematical and statistical models of technological processes. So the main part of the paper is to demonstrate the procedure of statistical processing of experimentally obtained data in order to create a prediction model and compare it with the theoretical calculation formulas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-68

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bátora, K. Vasilko, Machined surfaces, Technological inheritance, functionality (Obrobené povrchy, Technologická dedičnosť, funkčnosť). University of Trenčín, 2000, 183 p. (in Slovak).

Google Scholar

[2] J. Békes, Engineering technology of metalworking (Inžinierska technológia obrábania kovov). Bratislava: Alfa, 1981, 400 p. (in Slovak).

Google Scholar

[3] J. Békes, I. Andonov, Analysis and synthesis of engineering structures and processes (Analýza a syntéza strojárskych objektov a procesov), Bratislava: Alfa, 1986, 376 p. (in Slovak).

Google Scholar

[4] J. Beňo, Theory of Metal Cutting (Teória rezania kovov). Košice: SjF TU, 1999, 255 p. (in Slovak).

Google Scholar

[5] J. Buda, J. Békés, Theoretical fundamentals of metal machining (Teoretické základy obrábania kovov), Bratislava: Alfa, 1977, 682 p. (in Slovak).

Google Scholar

[6] S. Hrehová, A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, WSEAS Transaction on Power Systems 7/2 (2012) 50-59.

Google Scholar

[7] B. Bumbálek, V. Odvody, B Ošťadal, Surface roughness (Drsnost povrchu). Praha: SNTL, 1989, 330 p. (in Czech).

Google Scholar

[8] J. Jurko, Analysis of the interaction of workpiece material-cutting tool-chip, and friction in the cutting zone during machining (Analýza vzájomného pôsobenia obrábaný materiál - rezný nástroj - trieska, a trenia v zóne rezania pri obrábaní), in: Proc. of 8th Int. Conf. on Theory of machines and mechanisms, Liberec 5-7/09/2000. Liberec: TU, 2000, pp.273-276.

Google Scholar

[9] I. Kažimír, J. Beňo, Theory of Machining (Teória obrábania). Bratislava: Alfa, 1989, 280 p. (in Slovak).

Google Scholar

[10] K. Vasilko, Technology of dimensions change (Technológie zmeny rozmerov), Prešov: FMT TU, 2004, 315 p. (in Slovak).

Google Scholar

[11] K. Vasilko, Tribological relations between tool and workpiece at surface completion. (Tribologické vzťahy medzi nástrojom a obrobkom pri dokončovaní povrchov). Manufacturing Engineering/Výrobné inžinierstvo 2/4 (2003) 9-11. (in Slovak).

Google Scholar

[12] K. Vasilko, Deformation structures in metalworking (Deformačné štruktúry pri obrábaní kovov), in: Int. Sci. Conf. Functional Surfaces (Funkčné povrchy), May 27–28, 2004, Trenčín: FST, 2004, pp.200-208. (in Slovak).

Google Scholar

[13] K. Vasilko, D. Vasilková, New geometric relations between the cutting tool and the workpiece and their impact on Microgeometry (Nové geometrické vzťahy medzi rezným nástrojom a obrobkom a ich vplyv na mikrogeometriu). Manufacturing Engineering/Výrobné inžinierstvo ½ (2002).

Google Scholar

[14] E. Spišak, J. Majerníková, Plastic deformation of tin coated steel sheet under different stress-strain states, Progressive technologies and materials. Rzeszów: OWPR, 2009, pp.25-35.

Google Scholar

[15] E. Spišák et al., Steel sheets development for automotive industry (Vývoj oceľových plechov pre automobilový priemysel), in: Proc. of Conf. PRO-TECH-MA '07. Rzeszów: Politechnika Rzeszowska, 2007, pp.211-216.

Google Scholar

[16] R. L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments. New Jersey: J. Wiley & Sons, 2003, 730 p.

Google Scholar

[17] P. Michal, M. Gombár, A. Vagaská, J. Piteľ, J. Kmec, Experimental study and modeling of the zinc coating thickness, Advanced Materials Research 712-715 (2013) 382-386.

DOI: 10.4028/www.scientific.net/amr.712-715.382

Google Scholar

[18] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the coatings created by anodic oxidation of aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[19] A. Macurová, S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, Advanced Materials Research 658 (2013) 376-379.

DOI: 10.4028/www.scientific.net/amr.658.376

Google Scholar

[20] L. Mišík, S. Hloch, A. Vagaská, K. Monková, Side milling factors analysis affecting the surface irregularities of high-grade steel E295, Tehnicki Vjesnik 15/2 (2008) 19-23.

Google Scholar

[21] J. Boržíková, J. Mižák, J. Piteľ, Monitoring of operating conditions of biomass combustion process, Applied Mechanics and Materials 308 (2013) 153-158.

DOI: 10.4028/www.scientific.net/amm.308.153

Google Scholar

[22] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States 4, Lüdenscheid, RAM-Verlag (2011) pp.5-8.

Google Scholar

[23] M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials 308 (2013) 63-68.

DOI: 10.4028/www.scientific.net/amm.308.63

Google Scholar

[24] T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.

DOI: 10.4028/www.scientific.net/kem.496.229

Google Scholar

[25] J. Piteľ, M. Tóthová, Dynamic modeling of PAM based actuator using modified Hil's muscle model, Proc. of the 2013 14th Int. Carpathian Control Conference ICCC 2013, No. 6560559, 2013, pp.307-310.

DOI: 10.1109/carpathiancc.2013.6560559

Google Scholar