[1]
B. Bátora, K. Vasilko, Machined surfaces, Technological inheritance, functionality (Obrobené povrchy, Technologická dedičnosť, funkčnosť). University of Trenčín, 2000, 183 p. (in Slovak).
Google Scholar
[2]
J. Békes, Engineering technology of metalworking (Inžinierska technológia obrábania kovov). Bratislava: Alfa, 1981, 400 p. (in Slovak).
Google Scholar
[3]
J. Békes, I. Andonov, Analysis and synthesis of engineering structures and processes (Analýza a syntéza strojárskych objektov a procesov), Bratislava: Alfa, 1986, 376 p. (in Slovak).
Google Scholar
[4]
J. Beňo, Theory of Metal Cutting (Teória rezania kovov). Košice: SjF TU, 1999, 255 p. (in Slovak).
Google Scholar
[5]
J. Buda, J. Békés, Theoretical fundamentals of metal machining (Teoretické základy obrábania kovov), Bratislava: Alfa, 1977, 682 p. (in Slovak).
Google Scholar
[6]
S. Hrehová, A. Vagaská, Application of fuzzy principles in evaluating quality of manufacturing process, WSEAS Transaction on Power Systems 7/2 (2012) 50-59.
Google Scholar
[7]
B. Bumbálek, V. Odvody, B Ošťadal, Surface roughness (Drsnost povrchu). Praha: SNTL, 1989, 330 p. (in Czech).
Google Scholar
[8]
J. Jurko, Analysis of the interaction of workpiece material-cutting tool-chip, and friction in the cutting zone during machining (Analýza vzájomného pôsobenia obrábaný materiál - rezný nástroj - trieska, a trenia v zóne rezania pri obrábaní), in: Proc. of 8th Int. Conf. on Theory of machines and mechanisms, Liberec 5-7/09/2000. Liberec: TU, 2000, pp.273-276.
Google Scholar
[9]
I. Kažimír, J. Beňo, Theory of Machining (Teória obrábania). Bratislava: Alfa, 1989, 280 p. (in Slovak).
Google Scholar
[10]
K. Vasilko, Technology of dimensions change (Technológie zmeny rozmerov), Prešov: FMT TU, 2004, 315 p. (in Slovak).
Google Scholar
[11]
K. Vasilko, Tribological relations between tool and workpiece at surface completion. (Tribologické vzťahy medzi nástrojom a obrobkom pri dokončovaní povrchov). Manufacturing Engineering/Výrobné inžinierstvo 2/4 (2003) 9-11. (in Slovak).
Google Scholar
[12]
K. Vasilko, Deformation structures in metalworking (Deformačné štruktúry pri obrábaní kovov), in: Int. Sci. Conf. Functional Surfaces (Funkčné povrchy), May 27–28, 2004, Trenčín: FST, 2004, pp.200-208. (in Slovak).
Google Scholar
[13]
K. Vasilko, D. Vasilková, New geometric relations between the cutting tool and the workpiece and their impact on Microgeometry (Nové geometrické vzťahy medzi rezným nástrojom a obrobkom a ich vplyv na mikrogeometriu). Manufacturing Engineering/Výrobné inžinierstvo ½ (2002).
Google Scholar
[14]
E. Spišak, J. Majerníková, Plastic deformation of tin coated steel sheet under different stress-strain states, Progressive technologies and materials. Rzeszów: OWPR, 2009, pp.25-35.
Google Scholar
[15]
E. Spišák et al., Steel sheets development for automotive industry (Vývoj oceľových plechov pre automobilový priemysel), in: Proc. of Conf. PRO-TECH-MA '07. Rzeszów: Politechnika Rzeszowska, 2007, pp.211-216.
Google Scholar
[16]
R. L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments. New Jersey: J. Wiley & Sons, 2003, 730 p.
Google Scholar
[17]
P. Michal, M. Gombár, A. Vagaská, J. Piteľ, J. Kmec, Experimental study and modeling of the zinc coating thickness, Advanced Materials Research 712-715 (2013) 382-386.
DOI: 10.4028/www.scientific.net/amr.712-715.382
Google Scholar
[18]
M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the coatings created by anodic oxidation of aluminium, Applied Mechanics and Materials 308 (2013) 95-100.
DOI: 10.4028/www.scientific.net/amm.308.95
Google Scholar
[19]
A. Macurová, S. Hrehová, Some properties of the pneumatic artificial muscle expressed by the nonlinear differential equation, Advanced Materials Research 658 (2013) 376-379.
DOI: 10.4028/www.scientific.net/amr.658.376
Google Scholar
[20]
L. Mišík, S. Hloch, A. Vagaská, K. Monková, Side milling factors analysis affecting the surface irregularities of high-grade steel E295, Tehnicki Vjesnik 15/2 (2008) 19-23.
Google Scholar
[21]
J. Boržíková, J. Mižák, J. Piteľ, Monitoring of operating conditions of biomass combustion process, Applied Mechanics and Materials 308 (2013) 153-158.
DOI: 10.4028/www.scientific.net/amm.308.153
Google Scholar
[22]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States 4, Lüdenscheid, RAM-Verlag (2011) pp.5-8.
Google Scholar
[23]
M. Balara, The upgrade methods of the pneumatic actuator operation ability, Applied Mechanics and Materials 308 (2013) 63-68.
DOI: 10.4028/www.scientific.net/amm.308.63
Google Scholar
[24]
T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.
DOI: 10.4028/www.scientific.net/kem.496.229
Google Scholar
[25]
J. Piteľ, M. Tóthová, Dynamic modeling of PAM based actuator using modified Hil's muscle model, Proc. of the 2013 14th Int. Carpathian Control Conference ICCC 2013, No. 6560559, 2013, pp.307-310.
DOI: 10.1109/carpathiancc.2013.6560559
Google Scholar