[1]
Mor G K, Carvalho M A, Varghese O K, Pishko M V, Grimes C A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [J]. Journal of Materials Research, 2004, 19(2): 628-634.
DOI: 10.1557/jmr.2004.19.2.628
Google Scholar
[2]
Ruan C, Paulose M, Varghese O K, Grimes C A. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Solar Energy Materials & Solar Cells, 2006, 90: 1283-1295.
DOI: 10.1016/j.solmat.2005.08.005
Google Scholar
[3]
Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B, Grimes C A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17: 1446-1448.
DOI: 10.1088/0957-4484/17/5/046
Google Scholar
[4]
ZHOU Wu-yi, CAO Qing-yun, TANG Shao-qiu, LUO Ying. Effects of sulfur doping on structure phase transformation and visible-light photocatalytic activity of nano-TiO2[J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (7): 1233-1238.
Google Scholar
[5]
Chu S Z, Wada K, Inoue S, Todoroki S. Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process[J]. Surface and Coatings Technology, 2003, 169-170.
DOI: 10.1016/s0257-8972(03)00057-4
Google Scholar
[6]
Suzuki Y, Yoshikawa S. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method[J]. J Mater Res, 2004, 19(4): 982-985.
DOI: 10.1557/jmr.2004.0128
Google Scholar
[7]
Mor G K, Varghese O K, Paulose M, et al. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Adv Funct Mater, 2005, 15: 1291-1296.
DOI: 10.1002/adfm.200500096
Google Scholar
[8]
Mayer K. M, Hafner J.H. Localized Surface Plasmon Resonance Sensors [J], Chemical Reviews, 2011, 111: 3828-3857.
DOI: 10.1021/cr100313v
Google Scholar