Solid-State Nanopores for Nanoparticle Sensing

Article Preview

Abstract:

In recent years, single particle detection techniques based on driving nanoparticles through nanoscopic pores with a voltage or pressure had been the subject of numerous studies. Since particles with high charge, such as DNA and proteins, have been widely used for research, there was little information about the translocation behavior of nanosized particles which with low charge. However, nanoparticles include virus and colloids are important samples for nanopore sensing technology. In this study, we employed the solid-state nanopore to sense nanoparticles as fundamental study. Nanopore with diameter of 185 nm has been used to detect the nanoparticles with compared low zeta potential of-16 mv in different voltages. And simulations of electric field strength was made by using COMSOL Multiphysics to assist analyze the translocation behavior. The result suggests that the nanoparticles could transport the nanopore under the large electric field. By rising up the bias voltage could favor the detection of the nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, and X. Huang, The potential and challenges of nanopore sequencing, Nat. Biotechnol. 26(2008)1146-1153.

DOI: 10.1038/nbt.1495

Google Scholar

[2] N. Arjmandi, W. Van Roy, L. Lagae, and G. Borghs, Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores, Anal. Chem. 84(2012)8490-6.

DOI: 10.1021/ac300705z

Google Scholar

[3] J. Hurley, Sizing particles with a Coulter counter, Biophys. J. 10(1970)74-79.

Google Scholar

[4] K. J. Freedman, M. Jürgens, A. Prabhu, C. W. Ahn, P. Jemth, J. B. Edel, and M. J. Kim, Chemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores, Anal. Chem. 83(2011)5137-5144.

DOI: 10.1021/ac2001725

Google Scholar

[5] B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol. 6(2011)615-624.

Google Scholar

[6] K. N. Sugahara, T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy, O. M. Girard, D. Hanahan, R. F. Mattrey, and E. Ruoslahti, Tissue-penetrating delivery of compounds and nanoparticles into tumors, Cancer cell. 16(2009)510-520.

DOI: 10.1016/j.ccr.2009.10.013

Google Scholar

[7] M. Tsutsui, S. Hongo, Y. He, M. Taniguchi, N. Gemma, and T. Kawai, Single-nanoparticle detection using a low-aspect-ratio pore, ACS nano. 6(2012)3499-3505.

DOI: 10.1021/nn300530b

Google Scholar

[8] A. Storm, J. Chen, X. Ling, H. Zandbergen, and C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision, Nat. Mater. 2(2003)537-540.

DOI: 10.1038/nmat941

Google Scholar

[9] K. H. Lee, X. Y. Lim, K. W. Wai, F. Romanato, and C. C. Wong, Variation of Nanopore Diameter Along Porous Anodic Alumina Channels by Multi-Step Anodization, J. Nano. Sci. Nano. Techno. 11(2011)1147-1153.

DOI: 10.1166/jnn.2011.3097

Google Scholar

[10] S. Ng, H. Wong, H. Lau, and C. Leung, Large-Area Anodized Alumina Nanopore Arrays Assisted by Soft Ultraviolet Nanoimprint Prepatterning, J. Nano. Sci. Nano. Techno. 12(2012)6315-6320.

DOI: 10.1166/jnn.2012.6440

Google Scholar

[11] L. X. Zhang, S. L. Cai, Y. B. Zheng, X. H. Cao, and Y. Q. Li, Smart Homopolymer Modification to Single Glass Conical Nanopore Channels: Dual‐Stimuli‐Actuated Highly Efficient Ion Gating, Adv. Funct. Mater. 21(2011)2103-2107.

DOI: 10.1002/adfm.201002627

Google Scholar

[12] K. Zhou, L. Li, Z. Tan, A. Zlotnick, and S. C. Jacobson, Characterization of hepatitis B virus capsids by resistive-pulse sensing, J. Am. Chem. 133(2011)1618-1621.

DOI: 10.1021/ja108228x

Google Scholar

[13] J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Ion-beam sculpting at nanometre length scales, Nat. 412(2001)166-169.

DOI: 10.1038/35084037

Google Scholar

[14] L. P. Liu, H. W. Wu, Y. Xuan, X. J. Wang, Y. Zhang, Y. W. Chen, and Q. J. Liu, Study on the size shrinking and shape changing of solid-state nanopores, Adv. Mater. Res. 189(2011)3218-3221.

DOI: 10.4028/www.scientific.net/amr.189-193.3218

Google Scholar

[15] W. -J. Lan, D. A. Holden, B. Zhang, and H. S. White, Nanoparticle transport in conical-shaped nanopores, Anal. Chem. 83(2011)3840-3847.

DOI: 10.1021/ac200312n

Google Scholar

[16] R. Wei, V. Gatterdam, R. Wieneke, R. Tampé, and U. Rant, Stochastic sensing of proteins with receptor-modified solid-state nanopores, Nat. Nanotechnol. 7(2012)257-263.

DOI: 10.1038/nnano.2012.24

Google Scholar

[17] P. Chen, J. Gu, E. Brandin, Y. -R. Kim, Q. Wang, and D. Branton, Probing single DNA molecule transport using fabricated nanopores, Nano. Lett. 4(2004)2293-2298.

DOI: 10.1021/nl048654j

Google Scholar