Structural Dependences of Gunn Oscillations in a Planar Nano-Device

Article Preview

Abstract:

Gunn oscillations in a GaAs-based planar nanodevice are studied using a two-dimensional ensemble Monte Carlo (EMC) method. Current oscillations with a frequency of about 0.1 THz have been observed. The current oscillations are accompanied by electron domain evolution along the nanochannel. As such, they can be attributed to Gunn Effect. Further study shows that the Gunn oscillations are not only bias-dependent, but also structural-dependent. The threshold voltage and the amplitude of the oscillations are both related to the channel width and the asymmetry of the device structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-42

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sherwin, Nature: Vol. 420 (2002), p.131.

Google Scholar

[2] D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, Proc. IEEE: Vol. 93 (2005), p.1722.

Google Scholar

[3] M. Tonouchi, Nature photonic: Vol. 1 (2007), p.97.

Google Scholar

[4] P. H. Siegel, IEEE Trans. Microwave Theory Tech.: Vol. 50 (2002), p.910.

Google Scholar

[5] A. Khalid, N. J. Pilgrim, G. M. Dunn, M. C. Holland, C. R. Stanley, I. G. Thayne, and D. R. S. Cumming, IEEE Electron Device Lett.: Vol. 28 (2007), p.849.

DOI: 10.1109/led.2007.904218

Google Scholar

[6] A. Íñiguez-de-la-Torre, I. Íñiguez-de-la-Torre, J. Mateos, T. González, P. Sangaré, M. Faucher, B. Grimbert, V. Brandli, G. Ducournau, and C. Gaquière, J. Appl. Phys.: Vol. 111 (2012), p.113705.

DOI: 10.1063/1.4724350

Google Scholar

[7] A. Khalid, C. Li, G. M. Dunn, M. J. Steer, I. G. Thayne, and M. Kuball, IEEE Electron Devices Lett.: Vol. 34 (2013), p.39.

Google Scholar

[8] A. Khalid, C. Li, V. Papageorgiou, N. J. Pilgrim, G. M. Dunn, and D. R. S. Cumming, Microwave and optical tech. Lett.: Vo. 55 (2013), p.686.

Google Scholar

[9] Y. Wang, L. A. Yang, W. Mao, S. Long, and Y. Hao, IEEE Trans. electron devices: Vol. 60 (2013), p.1600.

Google Scholar

[10] K. Y. Xu, G. Wang, and A. M. Song, Appl. Phys. Lett.: Vol. 93 (2008), p.233506.

Google Scholar

[11] A. Íñiguez–de-la-Torre, I. Íñiguez–de-la-Torre, J. Mateos, and T. González, Appl. Phys. Lett.: Vol. 99 (2011), p.062109.

DOI: 10.1063/1.3613956

Google Scholar

[12] J-F. Millithaler, I. Íñiguez-de-la-Torre, A. Íñiguez-de-la-Torre, T. González, P. Sangaré, G. Ducournau, C. Gaquière, and J. Mateos, Appl. Phys. Lett.: Vol. 104 (2014), p.073509.

DOI: 10.1063/1.4775406

Google Scholar

[13] K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, J. Appl. Phys.: Vol. 103 (2008), p.113708.

Google Scholar

[14] C. Balocco, S. R. Kasjoo, X. F. Lu, L. Q. Zhang, Y. Alimi, Y. S. Winnerl, and A. M. Song, Appl. Phys. Lett.: Vol. 98 (2011), p.223501.

Google Scholar

[15] C. Jacoboni and P. Lugli: The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York 1989).

DOI: 10.1007/978-3-7091-6963-6_5

Google Scholar

[16] A. M. Song, M. Missous, P. Omling, A. P. Peaker, L. Samuelson, and W. Seifert, Appl. Phys. Lett.: Vol. 83 (2003), p.1881.

DOI: 10.1063/1.1606881

Google Scholar