Influence of Different Ultrasonic Wave on Polymerization of Polyaniline Nanofiber

Article Preview

Abstract:

Ultrasonic polymerizations at various wave frequencies of 5-20 kHz were used to synthesize polyaniline (PANI) nanofibers. PANI was synthesized using hydrochloric acid (HCl) as a dopant and ammonium persulfate (APS) as an oxidant. The characteristics of PANI based on molecular structure of functional group and morphology were characterized by fourier transform infrared (FTIR) and transmission electron microscopy (TEM). TEM images of PANI nanofiber show a long nanofibers structure with average diameter of ~25 nm. The FTIR spectra were in acceptable range and confirmed the successful formation of PANI. In this study, the polymerization at frequency wave of 20 kHz shows the best overall properties of produced PANI nanofiber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-54

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Asim, S. Radiman, M. A. Yarmo, Synthesis of WO3 in Nanoscale with the Usage of Sucrose Ester Microemulsion and CTAB Micelle Solution Materials Letters. 61(2007) 2652–2657.

DOI: 10.1016/j.matlet.2006.10.014

Google Scholar

[2] A. G. MacDiarmid, Polyaniline and polypyrrole: Where are we headed? Synthetic Metals. 84(1997) 27-34.

DOI: 10.1016/s0379-6779(97)80658-3

Google Scholar

[3] S. Bhadra, N. K. Singha, D. Khastgir, Electrochemical Synthesis of Polyaniline and its Comparison with Chemically Synthesized Polyaniline. Journal of Applied Polymer Science. 104(2007) 1900 - (1904).

DOI: 10.1002/app.25867

Google Scholar

[4] A. T. Ozyilmaz, T. Tuken, B. Yazici, M. Erbil, The Electrochemical Synthesis and Corrosion Performance of Polyaniline on Copper. Progress in Organic Coating. 52(2005) 92-97.

DOI: 10.1016/j.porgcoat.2004.09.003

Google Scholar

[5] T. Tuken, A. T. Ozyilmaz, B. Yazici, M. Erbil, Electrochemical Synthesis of Polyaniline on Mild Steel in Acetonitrile-LiClO4 and Corrosion Performance. Applied Surface Science. 236(2004) 292-305.

DOI: 10.1016/j.apsusc.2004.05.001

Google Scholar

[6] Shirakawa, H. The Discovery of Polyacetylene Film: the Dawning of an Era of Conducting Polymers. Synthetic Metals. 125(2001) 3-10.

Google Scholar

[7] A. G. MacDiarmid, Synthetic Metals: A Novel Role for Organic Polymers. Synthetic Metals. 125(2001) 11–22.

DOI: 10.1016/s0379-6779(01)00508-2

Google Scholar

[8] T. J. Mason, J. Lorimer, Quantifying Sonochemistryly: Casting Some Light on a Black Art,. Ultrasonic. 30(1992) 40-42.

DOI: 10.1016/0041-624x(92)90030-p

Google Scholar

[9] Price, G. J.; Norris, G. J.; Peter, J. Polymerization of Methyl Methacrylate Initiated by Ultrasound. Macromolecules. 25(1992); 6447-6454.

DOI: 10.1021/ma00050a010

Google Scholar

[10] H. M. Cheung, K. Gaddam, Ultrasound-Assisted Emulsion Polymerization of Methyl Methacrylate and Styrene. Journal of Applied Polymer Science. 76(2000) 101-104.

DOI: 10.1002/(sici)1097-4628(20000404)76:1<101::aid-app13>3.0.co;2-f

Google Scholar

[11] S. Wizel, S. Margel, A. Gedanken, The Preparation of a Polystyrene–Iron Composite by using Ultrasound Radiation. Polymer International. 49(2000) 445-448.

DOI: 10.1002/(sici)1097-0126(200005)49:5<445::aid-pi294>3.0.co;2-9

Google Scholar

[12] R. V. Kumar, Y. Koltypin, Y. S. Cohen, Y. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken, Preparation of Amorphous Magnetite Nanoparticles embedded in Polyvinyl Alcohol using Ultrasound Radiation. Journal of Materials Chemistry. 10(2000).

DOI: 10.1039/b000440p

Google Scholar

[13] R. V. Eldik, C. D. Hubbard, Chemistry under Extreme or Non-Classical Conditions. Journal of Chemical Education. 74(1997) 764.

Google Scholar

[14] H. Xia, Q. Wang, Ultrasonic Irradiation: A Novel Approach to Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites. Chemistry of Material. 14(2002) 2158-2165.

DOI: 10.1021/cm0109591

Google Scholar

[15] Y. Li, F. Qian, J. Xiang, C. M. Lieber, Nanowire Electronic and Optoelectronic Devices. Materials Today. 9(2006) 18–27.

DOI: 10.1016/s1369-7021(06)71650-9

Google Scholar

[16] J. Laska, J. Widlarz, Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer. 46(2005) 1485–1495.

DOI: 10.1016/j.polymer.2004.12.008

Google Scholar

[17] J. Stejskal, I. Sapurina, J. Prokes, J. Zemek, In-situ Polymerized Polyaniline Film. Synthetic Metal. 105(1999) 195-202.

DOI: 10.1016/s0379-6779(99)00105-8

Google Scholar

[18] S. Quillard, G. Louam, J. P. Buisson, M. Boyer, M. Lapkowski, A. Pron, S. Lefrant, Vibrational Spectroscopic Studies of the Isotope Effects in Polyaniline. Synthetic Metals. 1997. 84(1997) 805-806.

DOI: 10.1016/s0379-6779(96)04155-0

Google Scholar

[19] S. K. Shukla, A. Bharadvaja, A. Tiwari, G. K. Parashar, G. C. Dubey, Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Advance Materials Letters. 1(2010) 129-134.

DOI: 10.5185/amlett.2010.3105

Google Scholar

[20] A. M. Catargiu, M. Grigoras, Polyaniline Synthesis in the Presence of Three Macrocyclic Compounds. Acta Chemica Iasi. 19(2011) 81-100.

Google Scholar

[21] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. A. Ramakrishna, A. Review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 63(2003) 2223–2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar