Influence of Sulfur Sources on the Phase Structure of CZTS Nanocrystals

Article Preview

Abstract:

Cu2ZnSnS4 (CZTS) nanocrystals have been synthesized via a simple heating-up method using Cu (acac)2, Zn (OAc)2·2H2O and SnCl2·2H2O as metal precursors, and sulfur powder, thioacetamide (TAA), dodecanethiol (DDT) as sulfur sources under same reaction conditions.The influence of different sulfur sources on the phase structure, morphology and optical properties of CZTS nanocrystals were investigated. The phase structure and morphology of the as-obtained nanocrystals were characterized by XRD, Raman, EDS and TEM measurements. The results indicated that the as-prepared CZTS were kesterite structure with S powder and TAA as sulfur sources, while wurtzite CZTS formed with DDT as sulfur source. The different release rate of H2S with different sulfur sources gave rise to different growth rate of the CZTS NCs. The band-gaps of CZTS NCs synhesized from TAA and DDT showed a blue shift due to the size-induced quantum confinement effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Shi, Y. Guo, Z. Dong, J. Lian, W. Wang, G. Liu, L. Wang, C.R. Ewing, Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv. Mater. 19 (2007) 4033-4037.

DOI: 10.1002/adma.200700035

Google Scholar

[2] S. Kim, T. Kim, M. Kang, S.K. Kwak, T.W. Yoo, L.S. Park, I. Yang, H. Wang, J.E. Lee, S.K. Kim, et al., Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134 (2012) 3804-3809.

DOI: 10.1021/ja210211z

Google Scholar

[3] S. Sapra, S. Mayilo, T.A. Klar, A.L. Rogach, J. Feldmann, Bright white-light emission from semiconductor nanocrystals: by chance and by design. Adv. Mater. 19 (2007) 569-572.

DOI: 10.1002/adma.200602267

Google Scholar

[4] V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, C. Steinhagen, T.B. Harvey, C.J. Stolle, B. A. Korgel, Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. J. Solid State Chem. 189 (2012) 2-12.

DOI: 10.1016/j.jssc.2011.11.002

Google Scholar

[5] L. Zhu, Y. H. Qiang, Y. L. Zhao, X. Q. Gu, Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl. Surf. Sci 292 (2014) 55-62.

DOI: 10.1016/j.apsusc.2013.11.063

Google Scholar

[6] Q. Guo, G. M. Ford, H.W. Hillhouse, R. Agrawal, Sulfide nanocrystal inks for dense Cu(In1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano Lett. 9 (2009) 3060-3065.

DOI: 10.1021/nl901538w

Google Scholar

[7] E. Arici, N. S. Sariciftci, D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13 (2003) 165-171.

DOI: 10.1002/adfm.200390024

Google Scholar

[8] M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, CZTS based thin film solar cells: a status review. Mater. Technol. 28 (2013) 98-109.

DOI: 10.1179/1753555712y.0000000038

Google Scholar

[9] A. Walsh, S. Y. Chen, S. H. Wei, X. G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Funct. Mater. 2 (2012) 400-409.

DOI: 10.1002/aenm.201100630

Google Scholar

[10] Y. Cao, Y. Xiao, J.Y. Jung, H.D. Um, S.W. Jee, H. M. Choi, J.H. Bang, J.H. Lee, Highly Electrocatalytic Cu2ZnSn(S1–xSex)4 Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ACS Appl Mater Interfaces 5 (2013) 479-484.

DOI: 10.1021/am302522c

Google Scholar

[11] M.I. Hossain, Prospects of CZTS Solar Cells from the Perspective of Material Properties, Fabrication Methods and Current Research Challenges. Chalcogenide Lett. 9 (2012) 231-242.

Google Scholar

[12] D. Dumcenco, Y.S. Huang, The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy. Opt. Mater. 35 (2013) 419-425.

DOI: 10.1016/j.optmat.2012.09.031

Google Scholar

[13] H.C. Jiang, P. C. Dai, Z. Y. Feng, W. L. Fan, J. H. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 22 (2012) 7502-7506.

DOI: 10.1039/c2jm16870g

Google Scholar

[14] M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, E.Y. Ye, S.Y. Chen, Q. H. Xu, M. Y. Han, Colloidal nanocrystals of Wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. Chem. Eur. J. 18 (2012) 3127-3131.

DOI: 10.1002/chem.201103635

Google Scholar

[15] X.S. Yin, C.H. Tang, M.H. Chen, S. Adams, H. Wang, H. Gong, Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications. J. Mater. Chem. A 1 (2013) 7927-7932.

DOI: 10.1039/c3ta11022b

Google Scholar

[16] X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 50 (2011) 11739-42.

DOI: 10.1002/anie.201104786

Google Scholar

[17] M. Miyauchi, T. Hanayama, D. Atarashi, E. Sakai, Photoenergy conversion in p-Type Cu2ZnSnS4 nanorods and n-Type metal oxide composites. J. Phys. Chem. C 116 (2012) 23945-23950.

DOI: 10.1021/jp307949n

Google Scholar

[18] S.C. Riha, B.A. Parkinson, A.L. Prieto, Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J. Am. Chem. Soc. 131 (2009) 12054-12055.

DOI: 10.1021/ja9044168

Google Scholar

[19] Q.J. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131 (2009) 11672-11673.

DOI: 10.1021/ja904981r

Google Scholar

[20] X.T. Lu, Z. B. Zhuang, Q. Peng, Y. D. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun. 47 (2011) 3141-3143.

DOI: 10.1039/c0cc05064d

Google Scholar

[21] T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: Influence of reactants on the chemical composition. Sol. Energ. Mat. Sol. C 101 (2012).

DOI: 10.1016/j.solmat.2012.02.025

Google Scholar

[22] C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 131 (2009) 12554-12555.

DOI: 10.1021/ja905922j

Google Scholar

[23] M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J. Phys. Chem. C 116 (2012) 26507-26516.

DOI: 10.1021/jp307346k

Google Scholar

[24] A.S.R. Chesman, J.V. Embden, N.W. Duffy, N.A.S. Webster, J.J. Jasieniak, In situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 Nanocrystals. Cryst. Growth. Des. 13 (2013) 1712-1720.

DOI: 10.1021/cg4000268

Google Scholar

[25] A.S.R. Chesman, N.W. Duffy, S. Peacock, L. Waddington, N.A.S. Webster, J.J. Jasieniak, Non-injection synthesis of Cu2ZnSnS4 nanocrystals using a binary precursor and ligand approach. Rsc Adv. 3 (2013) 1017-1020.

DOI: 10.1039/c2ra21530f

Google Scholar

[26] Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 65 (2011) 1535-1537.

DOI: 10.1016/j.matlet.2011.03.013

Google Scholar

[27] W. Xie, X. Jiang, C.W. Zou, D. Li, J. Zhang, J. Quan, L.X. Shao, Synthesis of highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for photovoltaic application. Phys. E 45 (2012) 16-20.

DOI: 10.1016/j.physe.2012.05.022

Google Scholar

[28] A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 47 (2011) 11721-11723.

DOI: 10.1039/c1cc14687d

Google Scholar

[29] H. Nishi, T. Nagano, S. Kuwabata, T. Torimoto, Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. Phys. Chem. Chem. Phys. 16 (2014) 672-675.

DOI: 10.1039/c3cp53946f

Google Scholar

[30] W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1 (2013) 3182-3186.

DOI: 10.1039/c3ta00357d

Google Scholar

[31] W.C. Liu, B.L. Guo, C. Mak, A.D. Li, X. S. Wu, F.M. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535 (2013) 39-43.

DOI: 10.1016/j.tsf.2012.11.073

Google Scholar

[32] Y. Zou, X. Su, J. Jiang, Phase-Controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S. J. Am. Chem. Soc. 135 (2013) 18377-18384.

DOI: 10.1021/ja405962k

Google Scholar

[33] P.A. Fernandes, P.M. P. Salome, A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517 (2009) 2519-2523.

DOI: 10.1016/j.tsf.2008.11.031

Google Scholar

[34] H. Du, G.Q. Xu, W.S. Chin, L. Huang, W. Ji, Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chem. Mater. 14 (2002) 4473-4479.

DOI: 10.1021/cm010622z

Google Scholar

[35] S.Y. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25 (2013) 1522-1539.

DOI: 10.1002/adma.201203146

Google Scholar