[1]
D. Shi, Y. Guo, Z. Dong, J. Lian, W. Wang, G. Liu, L. Wang, C.R. Ewing, Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv. Mater. 19 (2007) 4033-4037.
DOI: 10.1002/adma.200700035
Google Scholar
[2]
S. Kim, T. Kim, M. Kang, S.K. Kwak, T.W. Yoo, L.S. Park, I. Yang, H. Wang, J.E. Lee, S.K. Kim, et al., Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134 (2012) 3804-3809.
DOI: 10.1021/ja210211z
Google Scholar
[3]
S. Sapra, S. Mayilo, T.A. Klar, A.L. Rogach, J. Feldmann, Bright white-light emission from semiconductor nanocrystals: by chance and by design. Adv. Mater. 19 (2007) 569-572.
DOI: 10.1002/adma.200602267
Google Scholar
[4]
V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, C. Steinhagen, T.B. Harvey, C.J. Stolle, B. A. Korgel, Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. J. Solid State Chem. 189 (2012) 2-12.
DOI: 10.1016/j.jssc.2011.11.002
Google Scholar
[5]
L. Zhu, Y. H. Qiang, Y. L. Zhao, X. Q. Gu, Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl. Surf. Sci 292 (2014) 55-62.
DOI: 10.1016/j.apsusc.2013.11.063
Google Scholar
[6]
Q. Guo, G. M. Ford, H.W. Hillhouse, R. Agrawal, Sulfide nanocrystal inks for dense Cu(In1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano Lett. 9 (2009) 3060-3065.
DOI: 10.1021/nl901538w
Google Scholar
[7]
E. Arici, N. S. Sariciftci, D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13 (2003) 165-171.
DOI: 10.1002/adfm.200390024
Google Scholar
[8]
M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, CZTS based thin film solar cells: a status review. Mater. Technol. 28 (2013) 98-109.
DOI: 10.1179/1753555712y.0000000038
Google Scholar
[9]
A. Walsh, S. Y. Chen, S. H. Wei, X. G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Funct. Mater. 2 (2012) 400-409.
DOI: 10.1002/aenm.201100630
Google Scholar
[10]
Y. Cao, Y. Xiao, J.Y. Jung, H.D. Um, S.W. Jee, H. M. Choi, J.H. Bang, J.H. Lee, Highly Electrocatalytic Cu2ZnSn(S1–xSex)4 Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ACS Appl Mater Interfaces 5 (2013) 479-484.
DOI: 10.1021/am302522c
Google Scholar
[11]
M.I. Hossain, Prospects of CZTS Solar Cells from the Perspective of Material Properties, Fabrication Methods and Current Research Challenges. Chalcogenide Lett. 9 (2012) 231-242.
Google Scholar
[12]
D. Dumcenco, Y.S. Huang, The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy. Opt. Mater. 35 (2013) 419-425.
DOI: 10.1016/j.optmat.2012.09.031
Google Scholar
[13]
H.C. Jiang, P. C. Dai, Z. Y. Feng, W. L. Fan, J. H. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 22 (2012) 7502-7506.
DOI: 10.1039/c2jm16870g
Google Scholar
[14]
M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, E.Y. Ye, S.Y. Chen, Q. H. Xu, M. Y. Han, Colloidal nanocrystals of Wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. Chem. Eur. J. 18 (2012) 3127-3131.
DOI: 10.1002/chem.201103635
Google Scholar
[15]
X.S. Yin, C.H. Tang, M.H. Chen, S. Adams, H. Wang, H. Gong, Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications. J. Mater. Chem. A 1 (2013) 7927-7932.
DOI: 10.1039/c3ta11022b
Google Scholar
[16]
X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 50 (2011) 11739-42.
DOI: 10.1002/anie.201104786
Google Scholar
[17]
M. Miyauchi, T. Hanayama, D. Atarashi, E. Sakai, Photoenergy conversion in p-Type Cu2ZnSnS4 nanorods and n-Type metal oxide composites. J. Phys. Chem. C 116 (2012) 23945-23950.
DOI: 10.1021/jp307949n
Google Scholar
[18]
S.C. Riha, B.A. Parkinson, A.L. Prieto, Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J. Am. Chem. Soc. 131 (2009) 12054-12055.
DOI: 10.1021/ja9044168
Google Scholar
[19]
Q.J. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131 (2009) 11672-11673.
DOI: 10.1021/ja904981r
Google Scholar
[20]
X.T. Lu, Z. B. Zhuang, Q. Peng, Y. D. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun. 47 (2011) 3141-3143.
DOI: 10.1039/c0cc05064d
Google Scholar
[21]
T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: Influence of reactants on the chemical composition. Sol. Energ. Mat. Sol. C 101 (2012).
DOI: 10.1016/j.solmat.2012.02.025
Google Scholar
[22]
C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 131 (2009) 12554-12555.
DOI: 10.1021/ja905922j
Google Scholar
[23]
M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J. Phys. Chem. C 116 (2012) 26507-26516.
DOI: 10.1021/jp307346k
Google Scholar
[24]
A.S.R. Chesman, J.V. Embden, N.W. Duffy, N.A.S. Webster, J.J. Jasieniak, In situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 Nanocrystals. Cryst. Growth. Des. 13 (2013) 1712-1720.
DOI: 10.1021/cg4000268
Google Scholar
[25]
A.S.R. Chesman, N.W. Duffy, S. Peacock, L. Waddington, N.A.S. Webster, J.J. Jasieniak, Non-injection synthesis of Cu2ZnSnS4 nanocrystals using a binary precursor and ligand approach. Rsc Adv. 3 (2013) 1017-1020.
DOI: 10.1039/c2ra21530f
Google Scholar
[26]
Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 65 (2011) 1535-1537.
DOI: 10.1016/j.matlet.2011.03.013
Google Scholar
[27]
W. Xie, X. Jiang, C.W. Zou, D. Li, J. Zhang, J. Quan, L.X. Shao, Synthesis of highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for photovoltaic application. Phys. E 45 (2012) 16-20.
DOI: 10.1016/j.physe.2012.05.022
Google Scholar
[28]
A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 47 (2011) 11721-11723.
DOI: 10.1039/c1cc14687d
Google Scholar
[29]
H. Nishi, T. Nagano, S. Kuwabata, T. Torimoto, Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. Phys. Chem. Chem. Phys. 16 (2014) 672-675.
DOI: 10.1039/c3cp53946f
Google Scholar
[30]
W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1 (2013) 3182-3186.
DOI: 10.1039/c3ta00357d
Google Scholar
[31]
W.C. Liu, B.L. Guo, C. Mak, A.D. Li, X. S. Wu, F.M. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535 (2013) 39-43.
DOI: 10.1016/j.tsf.2012.11.073
Google Scholar
[32]
Y. Zou, X. Su, J. Jiang, Phase-Controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S. J. Am. Chem. Soc. 135 (2013) 18377-18384.
DOI: 10.1021/ja405962k
Google Scholar
[33]
P.A. Fernandes, P.M. P. Salome, A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517 (2009) 2519-2523.
DOI: 10.1016/j.tsf.2008.11.031
Google Scholar
[34]
H. Du, G.Q. Xu, W.S. Chin, L. Huang, W. Ji, Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chem. Mater. 14 (2002) 4473-4479.
DOI: 10.1021/cm010622z
Google Scholar
[35]
S.Y. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25 (2013) 1522-1539.
DOI: 10.1002/adma.201203146
Google Scholar