[1]
Muda, Lindasalwa, Mumtaj Begam, and I. Elamvazuthi. Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques., arXiv preprint arXiv: 1003. 4083 (2010).
Google Scholar
[2]
Bala, Anjali, Abhijeet Kumar, and Nidhika Birla. Voice command recognition system based on MFCC and DTW., International Journal of Engineering Science and Technology 2. 12 (2010): 7335-7342.
Google Scholar
[3]
Kevin M. Coggins and Jose Principe, Detection and Classification of Insect Sounds in a Grain Silo using a Neural Network.
Google Scholar
[4]
Nellenbach C. Chesmore E.D., Acoustic methods for the automated detection and identification of insects,. Acta Horticulturae (562): pp.223-231, (2001).
DOI: 10.17660/actahortic.2001.562.26
Google Scholar
[5]
Czarnecki, K. R. Z. Y. S. Z. T. O. F., and M. A. R. E. K. Moszyński. Using concentrated spectrogram for analysis of audio acoustic signals., Hydroacoustics 15 (2012): 27-32.
Google Scholar
[6]
Lampert, Thomas A., and Simon EM O'Keefe. A survey of spectrogram t rack detection algorithms., Applied acoustics 71. 2 (2010): 87-100.
DOI: 10.1016/j.apacoust.2009.08.007
Google Scholar
[7]
Tanyer, S. Gökhun, and Hamza Ozer. Voice activity detection in nonstationary noise., IEEE Transactions on Speech and Audio Processing 8. 4 (2000): 478-482.
DOI: 10.1109/89.848229
Google Scholar
[8]
Information on http: /www. ars. usda. gov/pandp/docs. htm?docid=10919#anastrepha%20suspensa.
Google Scholar
[9]
Elad, Michael, and Michal Aharon. Image denoising via sparse and redundant representations over learned dictionaries., Image Processing, IEEE Transactions on 15. 12 (2006): 3736-3745.
DOI: 10.1109/tip.2006.881969
Google Scholar
[10]
Chang, S. Grace, Bin Yu, and Martin Vetterli. Adaptive wavelet thresholding for image denoising and compression., Image Processing, IEEE Transactions on 9. 9 (2000): 1532-1546.
DOI: 10.1109/83.862633
Google Scholar