Artificial Neural Network Modeling of Ultrasound-Assisted Polysaccharides Extraction from Potentilla anserina and Anti-Platelet Aggregation Activity

Article Preview

Abstract:

In this study, Ultrasound-assisted extraction (UAE) was used for polysaccharides extraction from Potentilla anserina. A computer-stimulated artificial neural network (ANN) was developed to get a correlation between the input variables and the output parameter. Finally, the optimal process conditions were obtained as follows: extraction temperature 55 °C, extraction time 55 min, ratio of liquid to solid 20:1, power 175 W. Under optimized conditions, ultrasound-assisted extraction had obviously higher yield of polysaccharides than the traditional heat reflux method. The optimization procedure showed a close interaction between the experimental and simulated values for polysaccharides extraction. The R2 (0.99271) and MSE (0.0425) values of model suggested good fitness and generalization of the ANN. Moreover, the results also indicated that polysaccharides have inhibitory effect on ADP-induced platelet aggregation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-375

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chen, H. Q., Zhang, R. X., Huang, L. Q., Review on Potentilla anserina L. a kind of Tibetan herbs, J. Chim. Mater. Med. 25(2000) 311-313.

Google Scholar

[2] XuJie, H., Wei, C., Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology, Carbohydr. Polym. 72(2008) 67-74.

DOI: 10.1016/j.carbpol.2007.07.034

Google Scholar

[3] Li, J. W., Ding, S. D., Ding, X. L., Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. Jinsixiaozao, J. Food Eng. 80 (2007) 176-183.

DOI: 10.1016/j.jfoodeng.2006.05.006

Google Scholar

[4] Zhong, K., Wang, Q., Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology, Carbohydr. Polym. 80(2010) 19-25.

DOI: 10.1016/j.carbpol.2009.10.066

Google Scholar

[5] Baş, D., Boyacı, İ. H., Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78(2007) 846-854.

DOI: 10.1016/j.jfoodeng.2005.11.025

Google Scholar

[6] Mandal, S., Sivaprasad, P. V., Venugopal, S., Murthy, K. P. N., Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Appl. Soft Computing 9(2009) 237-244.

DOI: 10.1016/j.asoc.2008.03.016

Google Scholar

[7] Ali Akcayol, M., Cinar, C., Artificial neural network based modeling of heated catalytic converter performance, Appl. Therm. Eng. 25(2005) 2341-2350.

DOI: 10.1016/j.applthermaleng.2004.12.014

Google Scholar

[8] Jorjani, E., Chehreh Chelgani, S., Mesroghli, S. H., Application of artificial neural networks to predict chemical desulfurization of Tabas coal, Fuel 87(2008) 2727-2734.

DOI: 10.1016/j.fuel.2008.01.029

Google Scholar

[9] Nath, A., Chattopadhyay, P. K., Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surface methodology, J. Food Eng. 80(2007) 1282-1292.

DOI: 10.1016/j.jfoodeng.2006.09.023

Google Scholar

[10] Sin, H. N., Yusof, S., Sheikh Abdul Hamid, N., Rahman, R. A., Optimization of enzymatic clarification of sapodilla juice using response surface methodology, J. Food Eng. 73(2006) 313-319.

DOI: 10.1016/j.jfoodeng.2005.01.031

Google Scholar

[11] Izadifar, M., Jahromi, M. Z., Application of genetic algorithm for optimization of vegetable oil hydrogenation process, J. Food Eng. 78(2007) 1-8.

DOI: 10.1016/j.jfoodeng.2005.08.044

Google Scholar

[12] Suenaga, A., Ueki, H., Effect of orthovanadate on platelet aggregation induced by platelet-activating factor, Biol. Pharm. Bull. 27(2004) 1859-1863.

DOI: 10.1248/bpb.27.1859

Google Scholar

[13] Zhang, Z. S., Wang, L. J., Li, D., Jiao, S. S., Chen, X. D., Mao, Z. H., Ultrasound-assisted extraction of oil from flaxseed, Sep. Purif. Technol. 62(2008) 192-198.

DOI: 10.1016/j.seppur.2008.01.014

Google Scholar

[14] Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T. J., Investigation of the effects of ultrasound on vegetal tissues during solvent extraction, Ultrason. Sonochem. 8 (2001) 137-142.

DOI: 10.1016/s1350-4177(00)00033-x

Google Scholar

[15] Ying, Z., Han, X., Li, J., Ultrasound-assisted extraction of polysaccharides from mulberry leaves, Food Chem. 127(2011) 1273-1279.

DOI: 10.1016/j.foodchem.2011.01.083

Google Scholar

[16] Quan, C., Sun, Y., Qu, J., Ultrasonic extraction of ferulic acid from Angelica sinensis, Can. J. Chem. Eng. 87(2009) 562-567.

DOI: 10.1002/cjce.20185

Google Scholar

[17] Song, X., Mitnitski, A., MacKnight, C., Rockwood, K., Assessment of Individual Risk of Death Using Self‐Report Data: An Artificial Neural Network Compared with a Frailty Index, J. Am. Geriatrics Soc. 52(2004) 1180-1184.

DOI: 10.1111/j.1532-5415.2004.52319.x

Google Scholar

[18] Zhang, Z., Zhang, J., Zhang, J. P., Shi, J. N., Zhang, N., Study on Extraction Process of polysaccharides from potentilla anserina, Food Res. Dev. 30(2009) 46-48.

Google Scholar