Optimization and Identification of the Characteristics of an Hydroformed Structures

Article Preview

Abstract:

In this study, we present an experimental/numerical methodology which aims to improve 3D thin sheet hydroforming. The experimental study is dedicated to the identification of stress-strain flow by using the Nelder-Mead simplex algorithm optimization from the global measure of displacement and force. Applications are made to the simulation of thin sheet hydroforming using different die geometry to show the efficiency of the proposed methodology to localize plastic instability, thinning of the blanks and damage initiation under different forming condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Asnafi and A. Skogsgardh: Mater. Sci. and Eng. A279, (2000), pp.95-110.

Google Scholar

[2] Y. Hammi: Simulation numérique de l'endommagement dans les procédés de mise en forme, Ph.D. Thesis, UTC, April (2000).

Google Scholar

[3] T. Hama, T. Ohkubo, K. Kurisu, H. Fujimoto and H. Takuda: J. of Materials Processing Technology Vol. 177 (2006), pp.676-679.

DOI: 10.1016/j.jmatprotec.2006.03.213

Google Scholar

[4] K. Saanouni and Y. Hammi, in Continuous damage and fracture, edited by A. Benallal Elsevier, ISBN. 2-84299-247-4, Amsterdam, (2000).

Google Scholar

[5] K. Saanouni, A. Cherouat and Y. Hammi, in: Esaform Vol 1 (2001), pp.361-364.

Google Scholar

[6] A. Cherouat, K. Saanouni and Y. Hammi: Int. J. of Mech. Sciences Vol. 44 (2002), pp.2427-2446.

Google Scholar

[7] H.L. Xing and A. Makinouchi, in: Proceedings of the Numisheet' 99, Besançon, France, 13-17 September(1999).

Google Scholar

[8] O. Ghouati, H. Lenoir, P. Paquier and J. -C. Gelin, in: Proceedings of the Numisheet' 99, Besançon, France, 13-17 September (1999).

Google Scholar

[9] B. J. Donald and M.S.J. Hashmi: J. of Materials Processing Technology Vol. 103 (2000), pp.333-342.

Google Scholar

[10] T. Sokolowski, K. Gerke, M. Ahmetoglu and T. Atlan: J. of Mater. Proc. Techn. Vol. 98 (2000), pp.34-40.

Google Scholar

[11] YY. Zhu and S. Cescotto; Journal de Physique Vol 3(1) (1991), pp.751-757.

Google Scholar

[12] W. Spendley, G.R. Hext and F.R. Himsworth: Technometrics Vol. 4 (1962), pp.441-461.

Google Scholar

[13] F. van den Bergh: An analysis of particle swarm optimizers, Ph.D. dissertation, University of Pretoria, Pretoria (2001).

Google Scholar

[14] J. E. Rojas, A. El Hami and D. A. Rade: Inter. J. for Simul. and Multidisc. Design Optim., EDP Sciences, Vol. 2(2) (2008), pp.157-169.

Google Scholar

[15] R. Fletcher: Practical Methods of Optimization (John Wiley & Sons, Chichester, 1987).

Google Scholar

[16] R.R. Barton and J.S. Ivey: Management Science Vol. 42 (1996), pp.954-973.

Google Scholar

[17] L. Nazareth, P. Tzeng and Gilding the lily: Computational Optimization and Applications Vol. 22 (2002), pp.133-134.

Google Scholar

[18] J. Lemaître, J.L. Chaboche: Mécanique des Matériaux Solides (Dunod, Paris, 1988).

Google Scholar

[19] M. Koç: Development of design guidelines for part, tooling and process in the tube hydroforming technology, Ph.D. dissertation, The Ohio State University, Columbus, (1999).

Google Scholar