[1]
LIAO Ni-huan, HU Zhi-hong, etal. Review of the short-term load forecasting methods of electric power system [J]. Power System Protection and Control, 2011, 39(1): 147-152.
Google Scholar
[2]
KANG Chong-qing, ZHOU An-shi, etal. Impact Analysis of Hourly Weather Factors in Short-Term Load Forecasting and Its Processing Strategy [J]. Power System Technology, 2006(4): 5-10.
Google Scholar
[3]
NIU Dong-xiao, GU Zhi-hong, etal. Study on Forecasting Approach to Short-term Load of SVM Based on Data Mining [J]. Proceeding of CSEE, 2006, 9(18): 6-12.
Google Scholar
[4]
NIU Dongxiao, LIU Da, etal. Support Vector Machine Models Optimized by Genetic Algorithm for Hourly Load Rolling Forecasting [J]. Transaction of China Electrotechnical Society, 2007, 6(22): 148-153.
Google Scholar
[5]
YANG Jing-fei, CHENG Hao-zhong. Application of SVM to Power System Short-term Load Forecast [J]. Electric Power Automation Equipment, 2004, 2(2): 30-32.
Google Scholar
[6]
LI Canbing, LI Xiaohui, etal. A Novel Algorithm of Selecting Similar Days for Short-term Power Load Forecasting [J], Electric Power Automation Equipment, 2008, 5(9): 69-73.
Google Scholar
[7]
LIU Xu, LUO Dian-sheng, etal. Short-Term Load Forecasting Based on Load Decomposition and Hourly Weather Factors [J]. Power System Technology, 2009, 6(12): 94-100.
Google Scholar
[8]
WEI Zhiyuan, WANG Liming, etal. A ultra-short term forecasting method based on autogression[J]. Relay, 2007, 35(1): 77-81.
Google Scholar
[9]
ZHAO Yuan, ZHANG Xia-fei, XIE Kai-gui. Application of Nonparametric Auto-regression to Short-term Load Forecasting [J]. High Voltage Engineering, 2011, 2(37): 429-435.
Google Scholar
[10]
Hui Peng, Tohru Ozaki etcl. A Parameter Optimization Method for Radial Basis Function Type Models[J]. IEEE Transactions on Neural Networks, vol. 14, no. 2, pp.432-438, (2003).
DOI: 10.1109/tnn.2003.809395
Google Scholar
[11]
HOU Hai-liang, PENG Hui. Application of new ARX model to identification for magnetic levitation control system [J]. Computer Engineering and Applications, 2007, 43(29): 196-200, 213.
Google Scholar
[12]
M. B. Priestley. State dependent models: A general approach to nonlinear time series analysis[J]. J. Time Series Anal., 1980(1): 57–71.
DOI: 10.1111/j.1467-9892.1980.tb00300.x
Google Scholar
[13]
J. Vesin. An amplitude-dependent autoregressive signal model based on a radial basis function expansion [J]. in Proc. Int. Conf. Acoustics, Speech, Signal Processing, 1993, 3: 129–132.
DOI: 10.1109/icassp.1993.319452
Google Scholar
[14]
Hui Peng, Kazushi Nakano and Hideo Shioya. Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial Application [J]. IEEE Transaction on Control Systems Technology, 2007, 1(15): 130-143.
DOI: 10.1109/tcst.2006.883339
Google Scholar
[15]
D. Marquardt. An Algorithm for Least-squares Estimation of Nonlinear parameters [J]. SLAM J. Appl. Math., 1963(11): 431-441.
Google Scholar
[16]
Z. Shi, Y. Tamura, and T. Ozaki. Nonlinear Time Series Modeling With The Radial Basis Function-Based State-Dependent Autoregressive Model [J]. Int. J. Syst. Sci., vol. 30, p.717–727, (1999).
DOI: 10.1080/002077299292038
Google Scholar
[17]
S. McLoone, M. D. Brown, G. Irwin, and G. Lightbody. A hybrid linear/nonlinear training algorithm for feedforward neural networks [J], IEEE Trans. Neural Networks, 1998, 7(9): 669–684.
DOI: 10.1109/72.701180
Google Scholar