[1]
F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differential Equations Appl., 14(4-5)(2007), 643-669.
DOI: 10.1007/s00030-007-5033-0
Google Scholar
[2]
F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194(1)(2003), 82-115.
DOI: 10.1016/s0022-0396(03)00185-2
Google Scholar
[3]
C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37(4)(1970), 297-308.
DOI: 10.1007/bf00251609
Google Scholar
[4]
H. D. Fernández Sare, J. E. Muñoz Rivera, Stabiliy of Timoshenko systems with past history, J. Math. Anal. Appl., 339(1)(2008), 482-502.
DOI: 10.1016/j.jmaa.2007.07.012
Google Scholar
[5]
H. D. Ferández Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law, Arch. Ration. Mech. Anal., 194(1)(2009), 221-251.
DOI: 10.1007/s00205-009-0220-2
Google Scholar
[6]
A. Guesmia, S. A. Messaoudi, On the control of solutions of a viscoelastic equation, Appl. Math. Comput., 206(2)(2008), 589-597.
Google Scholar
[7]
J. Hale, Asymptotic behavior and dynamics in infinite dimensions, in Nonlinear Differential Equations, (J. Hale and P. Martinez-Amores, Eds. Pitman, Boston, (1985).
Google Scholar
[8]
S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167(2)(1992), 429-442.
Google Scholar
[9]
J. U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim, 25(6)(1987), 1417-1429.
DOI: 10.1137/0325078
Google Scholar
[10]
Zhuangyi Liu, Bopeng Rao, Energy decay rate of the thermoelastic Bresse system, Z. Math. Phys., 60(1)(2009), 54-69.
DOI: 10.1007/s00033-008-6122-6
Google Scholar
[11]
Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56(2005), 630-644.
DOI: 10.1007/s00033-004-3073-4
Google Scholar
[12]
S. A. Messaoudi, M.I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Methods Appl. Sci., 32(4)(2009), 454–469.
DOI: 10.1002/mma.1047
Google Scholar
[13]
S. A. Messaoudi and M.I. Mustafa A stability result in a memory-type Timoshenko system, Danam. Systems Appl. in press.
Google Scholar
[14]
S.A. Messaoudi, M. Pokojovy, B. Said-Houari, Nonlinear damped Timoshenko systems with second sound – Global existence and exponential stability, Math. Methods Appl. Sci., 32(5)(2009), 505-534.
DOI: 10.1002/mma.1049
Google Scholar
[15]
S.A. Messaoudi, B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 438(1)(2008), 298-307.
DOI: 10.1016/j.jmaa.2008.07.036
Google Scholar
[16]
J.E. Mu noz Rivera, R. Racke, Mildly dissipative nonlinear Timoshenko systems - Global existence and exponential stability, J. Math. Anal. Appl., 276(1)(2002), 248-278.
DOI: 10.1016/s0022-247x(02)00436-5
Google Scholar
[17]
A. Pazy, Semigroup of linear operators and appplications to partial differential equations[M]. Springer-Verlag, New York, (1983).
Google Scholar
[18]
C. A. Raposo, J. Ferreira, M. L. Santos, N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18(5)(2005), 535-541.
DOI: 10.1016/j.aml.2004.03.017
Google Scholar
[19]
Donghua Shi, Dexing Feng, Exponential decay of Timoshenko beam with lacally distributed feedback, IMA J. Math., Control Inform. 18(3)(2001), 395-403.
DOI: 10.1093/imamci/18.3.395
Google Scholar
[20]
A. Soufyane, A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differ. Equations, 2003(29)(2003), 1-14.
Google Scholar
[21]
S. W. Taylor, A smoothing property of a hyperbolic system and boundary controllability, J. Comput. Appl. Math., 114(1)(2000), 23-40.
Google Scholar
[22]
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, (1988).
Google Scholar
[23]
S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philos. Mag., 41(1921), 744-746.
Google Scholar
[24]
Q. -X. Yan, Boundary stabilization of Timoshenko beam, Systems Sci. Math. Sci., 13(4)(2000), 376-384.
Google Scholar