Polynomial Stability for Timoshenko-Type System with Past History

Article Preview

Abstract:

In this paper, we consider hyperbolic Timoshenko-type vibrating systems that are coupled to a heat equation modeling an expectedly dissipative effect through heat conduction. We use semigroup method to prove the polynomial stability result with assumptions on past history relaxation function exponentially decaying for the nonequal wave-speed case.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-84

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, Nonlinear Differential Equations Appl., 14(4-5)(2007), 643-669.

DOI: 10.1007/s00030-007-5033-0

Google Scholar

[2] F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, R. Racke, Energy decay for Timoshenko system of memory type, J. Differential Equations, 194(1)(2003), 82-115.

DOI: 10.1016/s0022-0396(03)00185-2

Google Scholar

[3] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37(4)(1970), 297-308.

DOI: 10.1007/bf00251609

Google Scholar

[4] H. D. Fernández Sare, J. E. Muñoz Rivera, Stabiliy of Timoshenko systems with past history, J. Math. Anal. Appl., 339(1)(2008), 482-502.

DOI: 10.1016/j.jmaa.2007.07.012

Google Scholar

[5] H. D. Ferández Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law, Arch. Ration. Mech. Anal., 194(1)(2009), 221-251.

DOI: 10.1007/s00205-009-0220-2

Google Scholar

[6] A. Guesmia, S. A. Messaoudi, On the control of solutions of a viscoelastic equation, Appl. Math. Comput., 206(2)(2008), 589-597.

Google Scholar

[7] J. Hale, Asymptotic behavior and dynamics in infinite dimensions, in Nonlinear Differential Equations, (J. Hale and P. Martinez-Amores, Eds. Pitman, Boston, (1985).

Google Scholar

[8] S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167(2)(1992), 429-442.

Google Scholar

[9] J. U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim, 25(6)(1987), 1417-1429.

DOI: 10.1137/0325078

Google Scholar

[10] Zhuangyi Liu, Bopeng Rao, Energy decay rate of the thermoelastic Bresse system, Z. Math. Phys., 60(1)(2009), 54-69.

DOI: 10.1007/s00033-008-6122-6

Google Scholar

[11] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56(2005), 630-644.

DOI: 10.1007/s00033-004-3073-4

Google Scholar

[12] S. A. Messaoudi, M.I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Methods Appl. Sci., 32(4)(2009), 454–469.

DOI: 10.1002/mma.1047

Google Scholar

[13] S. A. Messaoudi and M.I. Mustafa A stability result in a memory-type Timoshenko system, Danam. Systems Appl. in press.

Google Scholar

[14] S.A. Messaoudi, M. Pokojovy, B. Said-Houari, Nonlinear damped Timoshenko systems with second sound – Global existence and exponential stability, Math. Methods Appl. Sci., 32(5)(2009), 505-534.

DOI: 10.1002/mma.1049

Google Scholar

[15] S.A. Messaoudi, B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 438(1)(2008), 298-307.

DOI: 10.1016/j.jmaa.2008.07.036

Google Scholar

[16] J.E. Mu noz Rivera, R. Racke, Mildly dissipative nonlinear Timoshenko systems - Global existence and exponential stability, J. Math. Anal. Appl., 276(1)(2002), 248-278.

DOI: 10.1016/s0022-247x(02)00436-5

Google Scholar

[17] A. Pazy, Semigroup of linear operators and appplications to partial differential equations[M]. Springer-Verlag, New York, (1983).

Google Scholar

[18] C. A. Raposo, J. Ferreira, M. L. Santos, N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18(5)(2005), 535-541.

DOI: 10.1016/j.aml.2004.03.017

Google Scholar

[19] Donghua Shi, Dexing Feng, Exponential decay of Timoshenko beam with lacally distributed feedback, IMA J. Math., Control Inform. 18(3)(2001), 395-403.

DOI: 10.1093/imamci/18.3.395

Google Scholar

[20] A. Soufyane, A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differ. Equations, 2003(29)(2003), 1-14.

Google Scholar

[21] S. W. Taylor, A smoothing property of a hyperbolic system and boundary controllability, J. Comput. Appl. Math., 114(1)(2000), 23-40.

Google Scholar

[22] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, (1988).

Google Scholar

[23] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philos. Mag., 41(1921), 744-746.

Google Scholar

[24] Q. -X. Yan, Boundary stabilization of Timoshenko beam, Systems Sci. Math. Sci., 13(4)(2000), 376-384.

Google Scholar